901 resultados para cancer-cells


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heregulins constitute a family of growth factors belonging to the epidermal growth factor (EGF) family. Breast cancers that overexpress specific members of the EGF receptor family (EGFR, ErbB2, ErbB3, ErbB4) have increased metastatic potential, and Heregulin-β1 (HRGβ1), a ligand for ErbB3 and ErbB4, has also been shown to induce metastasis-related properties in breast cancer cells in vitro. The secreted form of the HRGβ1 is composed of five distinct structural domains, including the N-terminal domain, an immunoglobulin-like domain (IgG-like), a glycosylation domain, an EGF-like domain, and a β1-specific domain. Of these, the EGF-like domain is well characterized for its function in metastasis-related properties as well as its structure. However, the contributions of the other HRGβ1 domains in breast cancer metastasis remains unclear. ^ To investigate this, HRGβ1 proteins with targeted domain deletions were purified and subjected to assays for metastasis-related properties, including aggregation, invasion, activation of EGFR family members, and motility of breast cancer cells. These assays showed that retaining the EGF-like domain of HRGβ1 is important for activation of EGFRs. Interestingly, the HRGβ1 protein lacking the IgG-like domain (NGEB) led to a decrease in breast cancer cell motility, indicating the IgG-like domain modulates cell motility, an important step in cancer metastasis. ^ To understand the underlying mechanisms, I performed protein sequence and structural analysis of HRGβ1 and identified that the IgG-like domain of HRGβ1 shares sequence homology and three-dimensional structural similarity with the IgG-like domain of TRIO. TRIO is a cytoplasmic protein that directly associates with RhoA, a GTPase involved in cell reorganization and cell motility. Therefore, I hypothesized that HRGβ1 may translocate inside the breast cancer cells through receptor mediated endocytosis and bind to RhoA via its IgG-like domain. I show wild type HRGβ1 but not NGEB binds RhoA in vitro and in vivo, leading to RhoA activation. Inhibition of HRG-β1 internalization via endocytosis disrupted HRGβ1 binding to RhoA. Additionally, breast cancer cell motility induced by HRG-β1 is reduced after treatment with inhibitors to both endocytosis and RhoA function, similar to levels seen with NGEB treatment. ^ Thus, in addition to the well-known role of HRGβ1 as an extracellular stimulator of the EGFR family members, HRGβ1 also functions within the cell as a binding partner and activator of RhoA to modulate cancer cell motility. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ETS1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. ETS1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. The ETS1 gene generates two proteins, p51 and a spliced variant, p42, lacking exon VII. In this paper we show that p42-ETS1 expression bypasses the damaged Fas-induced apoptotic pathway in DLD1 colon carcinoma cells by up-regulating interleukin 1β-converting enzyme (ICE)/caspase-1 and causes these cancer cells to become susceptible to the effects of the normal apoptosis activation system. ICE/caspase-1 is a redundant system in many cells and tissues, and here we demonstrate that it is important in activating apoptosis in cells where the normal apoptosis pathway is blocked. Blocking ICE/caspase-1 activity by using specific inhibitors of this protease prevents the p42-ETS1-induced apoptosis from occurring, indicating that the induced ICE/caspase-1 enzyme is responsible for killing the cancer cells. p42-ETS1 activates a critical alternative apoptosis pathway in cancer cells that are resistant to normal immune attack, and thus it may be useful as an anticancer therapeutic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several angiogenic factors and extracellular matrix-degrading enzymes that promote invasion and metastasis of cancer are produced by stromal fibroblasts that surround cancer cells. The expression of genes that code for some of these proteins is regulated by the transcription factor NF-κB. In this report, we demonstrate that conditioned medium (CM) from estrogen receptor (ER)-negative but not ER-positive breast cancer cells induces NF-κB in fibroblasts. In contrast, CM from both ER-positive and ER-negative breast cancer cells induces NF-κB in macrophages and endothelial cells. NF-κB activation in fibroblasts was accompanied by induction of interleukin 6 (IL-6) and urokinase plasminogen activator (uPA), both of which promote angiogenesis and metastasis. A survey of cytokines known for their ability to induce NF-κB identified IL-1α as the factor responsible for NF-κB activation in fibroblasts. Analysis of primary breast carcinomas revealed the presence of IL-1α transcripts in majority of lymph node-positive breast cancers. These results along with the known role of IL-1α and IL-6 in osteoclast formation provide insight into the mechanism of metastasis and hypercalcemia in advanced breast cancers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Normal human luminal and myoepithelial breast cells separately purified from a set of 10 reduction mammoplasties by using a double antibody magnetic affinity cell sorting and Dynabead immunomagnetic technique were used in two-dimensional gel proteome studies. A total of 43,302 proteins were detected across the 20 samples, and a master image for each cell type comprising a total of 1,738 unique proteins was derived. Differential analysis identified 170 proteins that were elevated 2-fold or more between the two breast cell types, and 51 of these were annotated by tandem mass spectrometry. Muscle-specific enzyme isoforms and contractile intermediate filaments including tropomyosin and smooth muscle (SM22) alpha protein were detected in the myoepithelial cells, and a large number of cytokeratin subclasses and isoforms characteristic of luminal cells were detected in this cell type. A further 134 nondifferentially regulated proteins were also annotated from the two breast cell types, making this the most extensive study to date of the protein expression map of the normal human breast and the basis for future studies of purified breast cancer cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The achaete-scute genes encode essential transcription factors in normal Drosophila and vertebrate nervous system development. Human achaete-scute homolog-1 (hASH1) is constitutively expressed in a human lung cancer with neuroendocrine (NE) features, small cell lung cancer (SCLC), and is essential for development of the normal pulmonary NE cells that most resemble this neoplasm. Mechanisms regulating achaete-scute homolog expression outside of Drosophila are presently unclear, either in the context of the developing nervous system or in normal or neoplastic cells with NE features. We now provide evidence that the protein hairy-enhancer-of-split-1 (HES-1) acts in a similar manner as its Drosophila homolog, hairy, to transcriptionally repress achaete-scute expression. HES-1 protein is detected at abundant levels in most non-NE human lung cancer cell lines which lack hASH1 but is virtually absent in hASH1-expressing lung cancer cells. Moreover, induction of HES-1 in a SCLC cell line down-regulates endogenous hASH1 gene expression. The repressive effect of HES-1 is directly mediated by binding of the protein to a class C site in the hASH1 promoter. Thus, a key part of the process that determines neural fate in Drosophila is conserved in human lung cancer cells. Furthermore, modulation of this pathway may underlie the constitutive hASH1 expression seen in NE tumors such as SCLC, the most virulent human lung cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 (PEG-3), whose expression directly correlates with cancer progression and acquisition of oncogenic potential by transformed rodent cells. We presently demonstrate that forced expression of PEG-3 in tumorigenic rodent cells, and in human cancer cells, increases their oncogenic potential in nude mice as reflected by a shorter tumor latency time and the production of larger tumors with increased vascularization. Moreover, inhibiting endogenous PEG-3 expression in progressed rodent cancer cells by stable expression of an antisense expression vector extinguishes the progressed cancer phenotype. Cancer aggressiveness of PEG-3 expressing rodent cells correlates directly with increased RNA transcription, elevated mRNA levels, and augmented secretion of vascular endothelial growth factor (VEGF). Furthermore, transient ectopic expression of PEG-3 transcriptionally activates VEGF in transformed rodent and human cancer cells. Taken together these data demonstrate that PEG-3 is a positive regulator of cancer aggressiveness, a process regulated by augmented VEGF production. These studies also support an association between expression of a single nontransforming cancer progression-inducing gene, PEG-3, and the processes of cancer aggressiveness and angiogenesis. In these contexts, PEG-3 may represent an important target molecule for developing cancer therapeutics and inhibitors of angiogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool—as in speciation—aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein kinase A type I plays a key role in neoplastic transformation, conveying mitogenic signals of different growth factors and oncogenes. Inhibition of protein kinase A type I by antisense oligonucleotides targeting its RIα regulatory subunit results in cancer cell growth inhibition in vitro and in vivo. A novel mixed backbone oligonucleotide HYB 190 and its mismatched control HYB 239 were tested on soft agar growth of several human cancer cell types. HYB 190 demonstrated a dose-dependent inhibition of colony formation in all cell lines whereas the HYB 239 at the same doses caused a modest or no growth inhibition. A noninhibitory dose of each mixed backbone oligonucleotide was used in OVCAR-3 ovarian and GEO colon cancer cells to study whether any cooperative effect may occur between the antisense and a series of cytotoxic drugs acting by different mechanisms. Treatment with HYB 190 resulted in an additive growth inhibitory effect with several cytotoxic drugs when measured by soft agar colony formation. A synergistic growth inhibition, which correlated with increased apoptosis, was observed when HYB 190 was added to cancer cells treated with taxanes, platinum-based compounds, and topoisomerase II selective drugs. This synergistic effect was also observed in breast cancer cells and was obtained with other related drugs such as docetaxel and carboplatin. Combination of HYB 190 and paclitaxel resulted in an accumulation of cells in late S-G2 phases of cell cycle and marked induction of apoptosis. A cooperative effect of HYB 190 and paclitaxel was also obtained in vivo in nude mice bearing human GEO colon cancer xenografts. These results are the first report of a cooperative growth inhibitory effect obtained in a variety of human cancer cell lines by antisense mixed backbone oligonucleotide targeting protein kinase A type I-mediated mitogenic signals and specific cytotoxic drugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increased expression of epidermal growth factor receptor induced by tumor necrosis factor α renders pancreatic cancer cells more susceptible to antibody-dependent cellular cytotoxicity by a mAb specific for this receptor. Laboratory studies with athymic mice bearing xenografts of human pancreatic cancer cells demonstrated a cytokine-induced ability of the mAb to cause significant tumor regression. In a phase I/II clinical trial, 26 patients with unresectable pancreatic cancer were enrolled into three cohorts receiving variable amounts of the antibody together with a constant amount of tumor necrosis factor α. With increasing doses of antibody, the growth of the primary tumor was significantly inhibited. This was reflected by a longer median survival, with one complete remission lasting for 3 years obtained with the highest dose of antibody employed. Thus, a combination of the cytokine, tumor necrosis factor α, with a mAb to the epidermal growth factor receptor offers a potentially useful approach for the treatment of pancreatic cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microtubules are intrinsically dynamic polymers, and their dynamics play a crucial role in mitotic spindle assembly, the mitotic checkpoint, and chromosome movement. We hypothesized that, in living cells, suppression of microtubule dynamics is responsible for the ability of taxol to inhibit mitotic progression and cell proliferation. Using quantitative fluorescence video microscopy, we examined the effects of taxol (30–100 nM) on the dynamics of individual microtubules in two living human tumor cell lines: Caov-3 ovarian adenocarcinoma cells and A-498 kidney carcinoma cells. Taxol accumulated more in Caov-3 cells than in A-498 cells. At equivalent intracellular taxol concentrations, dynamic instability was inhibited similarly in the two cell lines. Microtubule shortening rates were inhibited in Caov-3 cells and in A-498 cells by 32 and 26%, growing rates were inhibited by 24 and 18%, and dynamicity was inhibited by 31 and 63%, respectively. All mitotic spindles were abnormal, and many interphase cells became multinucleate (Caov-3, 30%; A-498, 58%). Taxol blocked cell cycle progress at the metaphase/anaphase transition and inhibited cell proliferation. The results indicate that suppression of microtubule dynamics by taxol deleteriously affects the ability of cancer cells to properly assemble a mitotic spindle, pass the metaphase/anaphase checkpoint, and produce progeny.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyclin E is an important regulator of cell cycle progression that together with cyclin-dependent kinase (cdk) 2 is crucial for the G1/S transition during the mammalian cell cycle. Previously, we showed that severe overexpression of cyclin E protein in tumor cells and tissues results in the appearance of lower molecular weight isoforms of cyclin E, which together with cdk2 can form a kinase complex active throughout the cell cycle. In this study, we report that one of the substrates of this constitutively active cyclin E/cdk2 complex is retinoblastoma susceptibility gene product (pRb) in populations of breast cancer cells and tissues that also overexpress p16. In these tumor cells and tissues, we show that the expression of p16 and pRb is not mutually exclusive. Overexpression of p16 in these cells results in sequestering of cdk4 and cdk6, rendering cyclin D1/cdk complexes inactive. However, pRb appears to be phosphorylated throughout the cell cycle following an initial lag, revealing a time course similar to phosphorylation of glutathione S-transferase retinoblastoma by cyclin E immunoprecipitates prepared from these synchronized cells. Hence, cyclin E kinase complexes can function redundantly and replace the loss of cyclin D-dependent kinase complexes that functionally inactivate pRb. In addition, the constitutively overexpressed cyclin E is also the predominant cyclin found in p107/E2F complexes throughout the tumor, but not the normal, cell cycle. These observations suggest that overexpression of cyclin E in tumor cells, which also overexpress p16, can bypass the cyclin D/cdk4-cdk6/p16/pRb feedback loop, providing yet another mechanism by which tumors can gain a growth advantage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor that plays a key role in the differentiation of adipocytes. Activation of this receptor in liposarcomas and breast and colon cancer cells also induces cell growth inhibition and differentiation. In the present study, we show that PPARγ is expressed in human prostate adenocarcinomas and cell lines derived from these tumors. Activation of this receptor with specific ligands exerts an inhibitory effect on the growth of prostate cancer cell lines. Further, we show that prostate cancer and cell lines do not have intragenic mutations in the PPARγ gene, although 40% of the informative tumors have hemizygous deletions of this gene. Based on our preclinical data, we conducted a phase II clinical study in patients with advanced prostate cancer using troglitazone, a PPARγ ligand used for the treatment of type 2 diabetes. Forty-one men with histologically confirmed prostate cancer and no symptomatic metastatic disease were treated orally with troglitazone. An unexpectedly high incidence of prolonged stabilization of prostate-specific antigen was seen in patients treated with troglitazone. In addition, one patient had a dramatic decrease in serum prostate-specific antigen to nearly undetectable levels. These data suggest that PPARγ may serve as a biological modifier in human prostate cancer and its therapeutic potential in this disease should be further investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Cα), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators.