961 resultados para body measurement
Resumo:
Two backward-facing models with step heights of 2 and 3 mm are used to measure the convective surface heat transfer rates by using platinum thin-film gauges, deposited on Macor inserts. Heat transfer rates have been theoretically calculated along the flat plate portion of a model using the Eckert reference temperature method. The experimentally determined surface heat transfer rate distributions are compared with theoretical and numerical estimations. Experimental heat flux distribution over a flat plate model showed good agreement with the reference temperature method at stagnation enthalpy range of 0.8-2 MJ/kg. Theoretical analysis has been used for downstream of a backward-facing step using Gai's nondimensional analysis. It has been found from the present study that approximately 10 and 8 step heights are required for the flow to reattach for 2 and 3 mm step height backward-facing step models, respectively, at a nominal Mach number of 7.6.
Resumo:
As with 1,2-diphenylethane (dpe), X-ray crystallographic methods measure the central bond in meso-3,4-diphenylhexane-2,5-done (dphd) as significantly shorter than normal for an sp(3)-sp(3) bond. The same methods measure the benzylic (ethane C-Ph) bonds in dphd as unusually long for sp(3)-sp(2) liaisons. Torsional motions of the phenyl rings about the C-Ph bonds have been proposed as the artifacts behind the result of a 'short' central bond in dpe. While a similar explanation can, presumably, hold for the even 'shorter' central bond in dphd, it cannot account for the 'long' C-Ph bonds. The phenyl groups, departing much from regular hexagonal shape, adopt highly skewed conformations with respect to the plane constituted by the four central atoms. It is thought that-the thermal motions of the phenyl rings, conditioned by the potential wells in which they are ensconced in the unit cell, are largely libratory around their normal axes. In what appears to be a straightforward explanation under the 'rigid-body' concept, it appears that these libratory motions of the phenyl rings, that account, at the same time, for the 'short' central bond, are the artifacts behind the 'long' measurement of the C-Ph bonds. These motions could be superimposed on torsional motions analogous to those proposed in the case of dpe. An inspection of the ORTEP diagram from the 298 K data on dphd clearly suggests these possibilities. Supportive evidence for these qualitative explanations from an analysis of the differences between the mean square displacements of C(1) and C(7)/C(1a) and C(7a) based on the 'rigid-body model' is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Digital Image Correlation and Tracking (DIC/DDIT) is an optical method that employs tracking & image registration techniques for accurate 2D and 3D measurements of changes in images. This is often used to measure deformation (engineering), displacement, and strain, but it is widely applied in many areas of science and engineering. One very common application is for measuring the motion of an optical mouse.
Resumo:
This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.
Resumo:
In this paper, the development of a novel multipoint pressure sensor system suitable for the measurement of human foot pressure distribution has been presented. It essentially consists of a matrix of cantilever sensing elements supported by beams. Foil type strain gauges have been employed for the conversion of foot pressure in to proportional electrical response. Information on the signal conditioning circuitry used is given. Also, the results obtained on the performance of the system are included.