940 resultados para binding interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HIV-1 genome contains several genes coding for auxiliary proteins, including the small Vpr protein. Vpr affects the integrity of the nuclear envelope and participates in the nuclear translocation of the preintegration complex containing the viral DNA. Here, we show by photobleaching experiments performed on living cells expressing a Vpr-green fluorescent protein fusion that the protein shuttles between the nucleus and the cytoplasm, but a significant fraction is concentrated at the nuclear envelope, supporting the hypothesis that Vpr interacts with components of the nuclear pore complex. An interaction between HIV-1 Vpr and the human nucleoporin CG1 (hCG1) was revealed in the yeast two-hybrid system, and then confirmed both in vitro and in transfected cells. This interaction does not involve the FG repeat domain of hCG1 but rather the N-terminal region of the protein. Using a nuclear import assay based on digitonin-permeabilized cells, we demonstrate that hCG1 participates in the docking of Vpr at the nuclear envelope. This association of Vpr with a component of the nuclear pore complex may contribute to the disruption of the nuclear envelope and to the nuclear import of the viral DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis concerns work on structure and membrane interactions of enzymes involved in lipid synthesis, biomembrane and cell wall regulation and cell defense processes. These proteins, known as glycosyltransferases (GTs), are involved in the transfer of sugar moieties from nucleotide sugars to lipids or chitin polymers. Glycosyltransferases from three types of organisms have been investigated; one is responsible for vital lipid synthesis in Arabidopsis thaliana (atDGD2) and adjusts the lipid content in biomembranes if the plant experiences stressful growth conditions. This enzyme shares many structural features with another GT found in gram-negative bacteria (WaaG). WaaG is however continuously active and involved in synthesis of the protective lipopolysaccharide layer in the cell walls of Escherichia coli. The third type of enzymes investigated here are chitin synthases (ChS) coupled to filamentous growth in the oomycete Saprolegnia monoica. I have investigated two ChS-derived MIT domains that may be involved in membrane interactions within the endosomal pathway. From analysis of the three-dimensional structure and the amino-acid sequence, some important regions of these very large proteins were selected for in vitro studies. By the use of an array of biophysical methods (e.g. Nuclear Magnetic Resonance, Fluorescence and Circular Dichroism spectroscopy) and directed sequence analyses it was possible to shed light on some important details regarding the structure and membrane-interacting properties of the GTs. The importance of basic amino-acid residues and hydrophobic anchoring segments, both generally and for the abovementioned proteins specifically, is discussed. Also, the topology and amino-acid sequence of GT-B enzymes of the GT4 family are analyzed with emphasis on their biomembrane association modes. The results presented herein regarding the structural and lipid-interacting properties of GTs aid in the general understanding of glycosyltransferase activity. Since GTs are involved in a high number of biochemical processes in vivo it is of outmost importance to understand the underlying processes responsible for their activity, structure and interaction events. The results are likely to be useful for many applications and future experimental design within life sciences and biomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) or the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin-or light-induced expression of marker genes, we showed that auxininduced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Bacillus thuringiensis Cry toxins bind with different insect midgut proteins leading to toxin oligomerization, membrane insertion and pore formation. However, different Cry toxins had been shown to readily form high molecular weight oligomers or aggregates in solution in the absence of receptor interaction. The role of Cry oligomers formed in solution remains uncertain. The Cry9A proteins show high toxicity against different Lepidoptera, and no-cross resistance with Cry1A. Results: Cry9Aa655 protein formed oligomers easily in solution mediated by disulfide bonds, according to SDS-PAGE analysis under non-reducing and reducing conditions. However, oligomerization is not observed if Cry9Aa655 is activated with trypsin, suggesting that cysteine residues, C14 and C16, located in the N-terminal end that is processed during activation participate in this oligomerization. To determine the role of these residues on oligomerization and in toxicity single and double alanine substitution were constructed. In contrast to single C14A and C16A mutants, the double C14A–C16A mutant did not form oligomers in solution. Toxicity assays against Plutella xylostella showed that the C14A–C16A mutant had a similar insecticidal activity as the Cry9Aa655 protein indicating the oligomers of Cry9Aa formed in solution in the absence of receptor binding are not related with toxicity. Conclusions: The aggregation of Cry9Aa655 polypeptides was mediated by disulfide bonds. Cry9Aa655 C14 and C16C are involved in oligomerization in solution. These aggregate forms are not related to the mode of action of Cry9Aa leading to toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra of the CT-DNA at two concentration levels of MWCNT representing an increasing MWCNT/DNA molar ratio. In addition, spectrophotometric titrations between MWCNT and CT-DNA were carried out in order to utilize spectral changes as a means of detecting specific binding modes of either intercalation or degradation of DNA. Interactions of MWCNT induced significant changes in the CD spectra of the B-form of natural DNA. The intensities of the positive CD band at 280 nm decreased significantly. This decrease was found to be concentration-dependent. Following spectrophotometric titrations; specific subtle conformational changes were observed with a molar ratio combination of 2:1 between MWCNT and CT-DNA and these were characterized by a formation constant of the order of 103 M-1 and a negative Gibbs free energy suggesting that MWCNT avidly binds to DNA. Thermodynamic considerations revealed that electrostatic interactions between the DNA base pairs and the MWCNT are taking place accounting for the negative free energy change, positive enthalpy change with a small entropy change. The results obtained in the study of the binding interactions of MWCNT with DNA confirm that a cytogenetic effect of MWCNT with DNA is a possibility in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular 'switch' regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les septines sont des GTPases conservées dérégulées dans le cancer et les maladies neurodégénératives. Elles servent de protéines d’échafaudage et forment une barrière de diffusion à la membrane plasmique et au corps central lors de la cytokinèse. Elles interagissent avec l’actine et s’organisent en complexes qui polymérisent et forment des structures hautement organisées (anneaux et filaments). Leur dynamique d’assemblage et leur rôle dans la cellule restent à être élucidés. La Drosophile est un modèle simple pour l’étude des septines puisqu’on n’y retrouve que 5 gènes (sep1, sep2, sep4, sep5, peanut) comparativement aux 13 gènes chez l’humain. À l’aide d’un anticorps contre Pnut, nous avons identifié des structures tubulaires dans 30% des cellules S2 de Drosophile. Mon projet a comme but de caractériser ces tubes en élucidant leurs constituants, leur comportement et leurs propriétés pour mieux clarifier le mécanisme par lequel les septines forment des structures hautement organisées et interagissent avec le cytosquelette d’actine. Par immunofluorescence, j’ai pu démontrer que ces tubes sont cytoplasmiques, en mitose ou interphase, ce qui suggère qu’ils ne sont pas régulés par le cycle cellulaire. Pour investiguer la composition et les propriétés dynamiques de ces tubes, j’ai généré une lignée cellulaire exprimant Sep2-GFP qui se localise aux tubes et des ARNi contre les cinq septines. Trois septines sont importantes pour la formation de ces tubes et anneaux notamment Sep1, Sep2 et Pnut. La déplétion de Sep1 cause la dispersion du signal GFP en flocons, tandis que la déplétion de Sep2 ou de Pnut mène à la dispersion du signal GFP uniformément dans la cellule. Des expériences de FRAP sur la lignée Sep2-GFP révèlent un signal de retour très lent, ce qui indique que ces structures sont très stables. J’ai aussi démontré une relation entre l’actine et les septines. Le traitement avec la Latrunculin A (un inhibiteur de la polymérisation de l’actine) ou la Jasplakinolide (un stabilisateur des filaments d’actine) mène à la dépolymérisation rapide (< 30 min) des tubes en anneaux flottants dans le cytoplasme, même si ces tubes ne sont pas reconnus suite à un marquage de la F-actine. L’Actin05C-mCherry se localise aux tubes, tandis que le mutant déficient de la polymérisation, Actin05C-R62D-mCherry perd cette localisation. On observe aussi que la déplétion de la Cofiline et de l’AIP1 (ce qui déstabilise l’actine) mène au même phénotype que le traitement avec la Latrunculine A ou la Jasplakinolide. Alors on peut conclure qu’un cytosquelette d’actine dynamique est nécessaire pour la formation et le maintien des tubes de septines. Les futures études auront comme but de mieux comprendre l’organisation des septines en structures hautement organisées et leur relation avec l’actine. Ceci sera utile pour l’élaboration du réseau d’interactions des septines qui pourra servir à expliquer leur dérégulation dans le cancer et les maladies neurodégénératives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ccm cytochrome c maturation System I catalyzes covalent attachment of heme to apocytochromes c in many bacterial species and some mitochondria. A covalent, but transient, bond between heme and a conserved histidine in CcmE along with an interaction between CcmH and the apocytochrome have been previously indicated as core aspects of the Ccm system. Here, we show that in the Ccm system from Desulfovibrio desulfuricans, no CcmH is required, and the holo-CcmE covalent bond occurs via a cysteine residue. These observations call for reconsideration of the accepted models of System I-mediated c-type cytochrome biogenesis. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les septines sont des GTPases conservées dérégulées dans le cancer et les maladies neurodégénératives. Elles servent de protéines d’échafaudage et forment une barrière de diffusion à la membrane plasmique et au corps central lors de la cytokinèse. Elles interagissent avec l’actine et s’organisent en complexes qui polymérisent et forment des structures hautement organisées (anneaux et filaments). Leur dynamique d’assemblage et leur rôle dans la cellule restent à être élucidés. La Drosophile est un modèle simple pour l’étude des septines puisqu’on n’y retrouve que 5 gènes (sep1, sep2, sep4, sep5, peanut) comparativement aux 13 gènes chez l’humain. À l’aide d’un anticorps contre Pnut, nous avons identifié des structures tubulaires dans 30% des cellules S2 de Drosophile. Mon projet a comme but de caractériser ces tubes en élucidant leurs constituants, leur comportement et leurs propriétés pour mieux clarifier le mécanisme par lequel les septines forment des structures hautement organisées et interagissent avec le cytosquelette d’actine. Par immunofluorescence, j’ai pu démontrer que ces tubes sont cytoplasmiques, en mitose ou interphase, ce qui suggère qu’ils ne sont pas régulés par le cycle cellulaire. Pour investiguer la composition et les propriétés dynamiques de ces tubes, j’ai généré une lignée cellulaire exprimant Sep2-GFP qui se localise aux tubes et des ARNi contre les cinq septines. Trois septines sont importantes pour la formation de ces tubes et anneaux notamment Sep1, Sep2 et Pnut. La déplétion de Sep1 cause la dispersion du signal GFP en flocons, tandis que la déplétion de Sep2 ou de Pnut mène à la dispersion du signal GFP uniformément dans la cellule. Des expériences de FRAP sur la lignée Sep2-GFP révèlent un signal de retour très lent, ce qui indique que ces structures sont très stables. J’ai aussi démontré une relation entre l’actine et les septines. Le traitement avec la Latrunculin A (un inhibiteur de la polymérisation de l’actine) ou la Jasplakinolide (un stabilisateur des filaments d’actine) mène à la dépolymérisation rapide (< 30 min) des tubes en anneaux flottants dans le cytoplasme, même si ces tubes ne sont pas reconnus suite à un marquage de la F-actine. L’Actin05C-mCherry se localise aux tubes, tandis que le mutant déficient de la polymérisation, Actin05C-R62D-mCherry perd cette localisation. On observe aussi que la déplétion de la Cofiline et de l’AIP1 (ce qui déstabilise l’actine) mène au même phénotype que le traitement avec la Latrunculine A ou la Jasplakinolide. Alors on peut conclure qu’un cytosquelette d’actine dynamique est nécessaire pour la formation et le maintien des tubes de septines. Les futures études auront comme but de mieux comprendre l’organisation des septines en structures hautement organisées et leur relation avec l’actine. Ceci sera utile pour l’élaboration du réseau d’interactions des septines qui pourra servir à expliquer leur dérégulation dans le cancer et les maladies neurodégénératives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actinoporins are pore-forming toxins from sea anemones. Upon interaction with sphingomyelin-containing bilayers, they become integral oligomeric membrane structures that form a pore. Sticholysin II from Stichodactyla helianthus contains five tryptophans located at strategic positions; its role has now been studied using different mutants. Results show that W43 and W115 play a eterminant role in maintaining the high thermostability of the protein, while W146 provides specific interactions for protomer−protomer assembly. W110 and W114 sustain the hydrophobic effect, which is one of the major driving forces for membrane binding in the presence of Chol. However, in its absence, additional interactions with sphingomyelin are required. These conclusions were confirmed with two sphingomyelin analogues, one of which had impaired hydrogen bonding properties. The results obtained support actinoporins’ Trp residues playing a major role in membrane recognition and binding, but their residues have an only minor influence on the diffusion and oligomerization steps needed to assemble a functional pore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master, Biomedical & Molecular Sciences) -- Queen's University, 2016-08-23 15:03:30.807

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of a gene from transcription of the DNA into pre-messenger RNA (pre-mRNA) over translation of messenger RNA (mRNA) into protein is constantly monitored for errors. This quality control is necessary to guarantee successful gene expression. One quality control mechanism important to this thesis is called nonsense-mediated mRNA decay (NMD). NMD is a cellular process that eliminates mRNA transcripts harboring premature translation termination codons (PTCs). Furthermore, NMD is known to regulate certain transcripts with long 3′ UTRs. However, some mRNA transcripts are known to evade NMD. The mechanism of NMD activation has been subjected to many studies whereas NMD evasion or suppression still remains rather elusive. It has previously been shown that the cytoplasmic poly(A)-binding protein (PABPC1) is able to suppress NMD of certain transcripts. In this study I show that PABPC1 is able to suppress NMD of a long 3′ UTR-carrying reporter when tethered immediately downstream of the termination codon. I further am able to show the importance of the interaction between PABPC1 and eIF4G for NMD suppression, whereas the interaction between PABPC1 and eRF3a seems dispensable. These results indicate an involvement of efficient translation termination and potentially ribosome recycling in NMD suppression. I am able to show that if PABPC1 is too far removed from the terminating ribosome NMD is activated. After showing the importance of PABPC1 recruitment directly downstream of a terminating ribosome in NMD suppression, I am further able to demonstrate several different methods by which PABPC1 can be recruited. Fold-back of the poly(A)-tail mediated by two interacting proteins on opposite ends of a 3′ UTR manages to bring PABPC1 bound to the poly(A)-tail into close proximity of the terminating ribosome and therefore suppress NMD. Furthermore, small PAM2 peptides that are known to interact with the MLLE domain of PABPC1 are able to strongly suppress NMD initiated by either a long 3′ UTR or an EJC. I am also able to show the NMD antagonizing power of recruited PABPC1 for the known endogenous NMD target β-globin PTC39, which is responsible for the disease β-thalassemia. This shows the potential medical implications and application of suppressing NMD by recruiting PABPC1 into close proximity of a terminating ribosome.