973 resultados para bacterial endotoxin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute meningitis is a medical emergency, particularly in patients with rapidly progressing disease, mental status changes or neurological deficits. The majority of cases of bacterial meningitis are caused by a limited number of species, i.e. Streptococcus pneumoniae, Neisseria meningitis, Listeria monocytogenes, group B Streptococci (Streptococcus agalactiae), Haemophilus influenzae and Enterobacteriaceae. Many other pathogens can occasionally cause bacterial meningitis, often under special clinical circumstances. Treatment of meningitis includes two main goals: Eradication of the infecting organism, and management of CNS and systemic complications. Empiric therapy should be initiated without delay, as the prognosis of the disease depends on the time when therapy is started. One or two blood cultures should be obtained before administering the first antibiotic. Empiric therapy is primarily based on the age of the patient, with modifications if there are positive findings on CSF gram stain or if the patient presents with special risk factors. It is safer to choose regimens with broad coverage, as they can usually be modified within 24-48 hours, when antibiotic sensitivities of the infecting organism become available. Adjunctive therapy with dexamethasone is also administered in severely ill patients concomitantly with the first antibiotic dose. In patients who are clinically stable and are unlikely to be adversely affected if antibiotics are not administered immediately, including those with suspected viral or chronic meningitis, a lumbar puncture represents the first step, unless there is clinical suspicion of an intracerebral mass lesion. Findings in the CSF and on CT scan, if performed, will guide the further diagnostic work-up and therapy in all patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustained high-level exposure to glutamate, an excitatory amino acid neurotransmitter, leads to neuronal death. Kynurenic acid attenuates the toxic effects of glutamate by inhibition of neuronal excitatory amino acid receptors, including the N-methyl-D-aspartate subtype. To evaluate the role of glutamate in causing neuronal injury in a rat model of meningitis due to group B streptococci, animals were treated with kynurenic acid (300 mg/kg subcutaneously once daily) or saline beginning at the time of infection. Histopathologic examination after 24-72 h showed two distinct forms of neuronal injury, areas of neuronal necrosis in the cortex and injury of dentate granule cells in the hippocampus. Animals treated with kynurenic acid showed significantly less neuronal injury (P < .03) in the cortex and the hippocampus than did untreated controls. These results suggest an important contribution of glutamate to neurotoxicity in this animal model of neonatal meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endotoxin triggers the subarachnoid inflammation of gram-negative meningitis. This study examined the ability of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein (rBPI23) to block endotoxin-induced meningitis in rabbits. Intracisternal (ic) injection of 10-20 ng of meningococcal endotoxin induced high cerebrospinal fluid (CSF) concentrations of tumor necrosis factor (TNF) and CSF pleocytosis and increased CSF lactate concentrations. ic administration of rBPI23 significantly reduced meningococcal endotoxin-induced TNF release into CSF (P < .005), lactate concentrations (P < .001), and CSF white blood cell counts (P < .01). No such effect was observed in animals receiving intravenous rBPI23. Concentrations of rBPI23 in CSF were high after ic administration but low or undetectable after systemic administration. Thus, high concentrations of rBPI23 can effectively neutralize meningococcal endotoxin in CSF, but low CSF concentrations after systemic administration currently limit its potential usefulness as adjunctive drug treatment in gram-negative meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morbidity and mortality associated with bacterial meningitis remain high, although antibiotic therapy has improved during recent decades. The major intracranial complications of bacterial meningitis are cerebrovascular arterial and venous involvement, brain edema, and hydrocephalus with a subsequent increase of intracranial pressure. Experiments in animal models and cell culture systems have focused on the pathogenesis and pathophysiology of bacterial meningitis in an attempt to identify the bacterial and/or host factors responsible for brain injury during the course of infection. An international workshop entitled "Bacterial Meningitis: Mechanisms of Brain Injury" was organized by the Department of Neurology at the University of Munich and was held in Eibsee, Germany, in June 1993. This conference provided a forum for the exchange of current information on bacterial meningitis, including data on the clinical spectrum of complications, the associated morphological alterations, the role of soluble inflammatory mediators (in particular cytokines) and of leukocyte-endothelial cell interactions in tissue injury, and the molecular mechanisms of neuronal injury, with potential mediators such as reactive oxygen species, reactive nitrogen species, and excitatory amino acids. It is hoped that a better understanding of the pathophysiological events that take place during bacterial meningitis will lead to the development of new therapeutic regimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed studies of pharmacodynamic principles relevant to the therapy of bacterial meningitis are difficult to perform in man, while the rabbit model of bacterial meningitis has proved to be extremely valuable and has led to insights that appear relevant for the treatment of humans. Most importantly in the light of the restricted penetration of antibiotics into the CSF, animal studies have shown that in meningitis there is a dose-response curve between the CSF concentrations achieved by antibiotics and their bactericidal activity. This appears to be true for all classes of antibiotics thus far examined, including the beta-lactams, which do not show such a dose-response behaviour in other infections. Only CSF concentrations that exceed the MBC of the infecting organism by at least 10-30-fold achieve consistent and rapid bactericidal activity. Such rapid bactericidal activity is a requirement for successful therapy with beta-lactams and can be impaired with certain antibiotics by the specific conditions in infected CSF (protein content; acidic pH; slow-growing bacteria). However, rapid antibiotic killing of the infecting organisms may not be without adverse effects either. Some antibiotics, particularly beta-lactams lead to the brisk liberation of bacterial cell wall components (e.g. endotoxin, in the case of Gram-negative organisms) which have an inflammatory effect on the host and can lead to a temporary deterioration of the disease. Dexamethasone, when administered with the antibiotic, can prevent some of the adverse effects of rapid bacterial lysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify neurotoxic factors in meningitis, a neuronal cell line (HN33.1) was exposed to cerebrospinal fluid (CSF) obtained from rabbits with pneumococcal meningitis or Escherichia coli meningitis or 2 h and 6 h after meningitis was induced by proinflammatory bacterial products (pneumococcal cell walls, endotoxin). CSF from all types of meningitis induced similar degrees of cytotoxicity. When a soluble tumor necrosis factor (TNF) receptor that completely blocked TNF-mediated toxicity at 10(-7) M was used, all toxicity in meningitis caused by E. coli, endotoxin, or pneumococcal cell wall administration (2 h afterwards) was mediated by TNF. In contrast, CSF from animals with meningitis caused by live pneumococci or pneumococcal cell wall injection (6 h afterwards) retained cytotoxicity in the presence of the TNF receptor. Thus, in established pneumococcal meningitis, but not in the other forms of meningitis, TNF is not the only component toxic in this neuronal cell line.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of advances in our understanding of the pathophysiology of bacterial meningitis have been made in recent years. In vivo studies have shown that bacterial cell wall fragments and endotoxins are highly active components, independent of the presence of viable bacteria in the subarachnoid space. Their presence in the cerebrospinal fluid is associated with the induction of inflammation and with the development of brain edema and increased intracranial pressure. Antimicrobial therapy may cause an additional increase of harmful bacterial products in the cerebrospinal fluid and thereby potentiate these pathophysiological alterations. These changes may contribute to the development of brain damage during meningitis. Some promising experimental work has been directed toward counteracting the above phenomena with non-steroidal or steroidal anti-inflammatory agents as well as with monoclonal antibodies. Although considerable advances have been made, further research needs to be done in these areas to improve the prognosis of bacterial meningitis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the role of fever as a host defense in experimental pneumococcal meningitis in rabbits. Twelve hours after intracisternal inoculation of an encapsulated type 3 Streptococcus pneumoniae strain, body temperature was manipulated by using two different anesthetic drugs: pentobarbital, which did not affect temperature, and urethane, which mitigated the febrile response to infection. Growth rates of pneumococci in cerebrospinal fluid were dramatically influenced by modification of the febrile response. Rabbits whose fever was not suppressed had mean bacterial doubling times of 2.76 +/- 1.43 h. Animals with a blunted febrile response had a significantly faster mean bacterial growth rate (doubling time = 1.10 +/- 0.27 h; P less than 0.02). When the antipyretic effect of urethane was counteracted by raising the ambient temperature, animals also showed a marked reduction in pneumococcal growth rates. In vitro, the pneumococci grew well at 37 degrees C in Trypticase soy broth (doubling time = 0.61 +/- 0.05 h) and in pooled rabbit cerebrospinal fluid (doubling time = 0.85 +/- 0.07 h). However, at 41 degrees C neither medium supported growth. Thus, body temperature appears to be a critical determinant of pneumococcal growth rates in experimental meningitis, and fever could be a host defense in this disease.