971 resultados para atomic physics, quantum physics, Penning traps, proton, magnetic moment


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Negative ion photoelectron spectroscopy has been used to study the HCCN- and HCNC- ions. The electron affinities (EA) of cyanocarbene have been measured to be EA(HCCN (X) over tilde (3)Sigma(-)=2.003+/-0.014 eV and EA(DCCN (X) over tilde (3)Sigma(-))=2.009+/-0.020 eV. Photodetachment of HCCN- to HCCN (X) over tilde (3)Sigma(-) shows a 0.4 eV long vibrational progression in nu(5), the H-CCN bending mode; the HCCN- photoelectron spectra reveal excitations up to 10 quanta in nu(5). The term energies for the excited singlet state are found to be T-0(HCCN (a) over tilde (1)A('))=0.515+/-0.016 eV and T-0(DCCN (a) over tilde (1)A('))=0.518+/-0.027 eV. For the isocyanocarbene, the two lowest states switch and HCNC has a singlet ground state and an excited triplet state. The electron affinities are EA(HCNC (X) over tilde (1)A('))=1.883+/-0.013 eV and EA((X) over tilde (1)A(') DCNC)=1.877+/-0.010 eV. The term energy for the excited triplet state is T-0(HCNC (a) over tilde (3)A("))=0.050+/-0.028 eV and T-0(DCNC (a) over tilde (3)A("))=0.063+/-0.030 eV. Proton transfer kinetics in a flowing afterglow apparatus were used to re-measure the enthalpy of deprotonation of CH3NC to be Delta(acid)H(298)(CH3NC)=383.6+/-0.6 kcal mol(-1). The acidity/EA thermodynamic cycle was used to deduce D-0(H-CHCN)=104+/-2 kcal mol(-1) [Delta(f)H(0)(HCCN)=110+/-4 kcal mol(-1)] and D-0(H-CHNC)=106+/-4 kcal mol(-1) [Delta(f)H(0)(HCNC)=133+/-5 kcal mol(-1)]. (C) 2002 American Institute of Physics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Proton spin lattice relaxation (T1) in (CH3)4NCdBr3 at different Larmor frequencies (10, 20 and 30 MHz) has been studied in the temperature range 77 to 400 K. The variations in T1 at high temperature are independent of frequency and show a maximum due to spin rotation- interaction. The other features are interpreted as being due to isotropic tumbling of the tetramethylammonium ion and random reorientation of the CH3 group. The CW spectrum remained narrow up to 77 K and develops a wing structure at low temperatures. This observation is attributed to a possible tunnelling motion of the CH3 group, which has rather low activation energy as demonstrated by the study of T1.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report magnetic trapping of Yb in the excited P-3(2) state. This state, with a lifetime of 15 s, could play an important role in studies ranging from optical clocks and quantum computation to the search for a permanent electric dipole moment. Yb atoms are first cooled and trapped in the ground state in a 399-nm magneto-optic trap. The cold atoms are then pumped into the excited state by driving the S-1(0) -> P-3(1) -> S-3(1) transition. Atoms in the P-3(2) state are magnetically trapped in a spherical quadrupole field with an axial gradient of 110 G/cm. We trap up to 10(6) atoms with a lifetime of 1.5 s.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

H-1 NMR spin-lattice relaxation time measurements have been carried out in [(CH3)(4)N](2)SeO4 in the temperature range 389-6.6K to understand the possible phase transitions, internal motions and quantum rotational tunneling. A broad T, minimum observed around 280K is attributed to the simultaneous motions of CH3 and (CH3)(4)N groups. Magnetization recovery is found to be stretched exponential below 72 K with varying stretched exponent. Low-temperature T-1 behavior is interpreted in terms of methyl groups undergoing quantum rotational tunneling. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This article discusses the physics programme of the TOTEM experiment at the LHC. A new special beam optics with beta* = 90 m, enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described.