832 resultados para asymmetric transformation
Topotactic transformation and dehydration of the zeolite gismondine to a novel Ca feldspar structure
Resumo:
The synthesis and characterisation of copper(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*) and their use as catalysts in asymmetric cyclopropanation reactions are reported. All ligands and metal complexes were fully characterised, including crystal structures of some species determined by X-ray diffraction on single crystals. This allowed characterising the very different conformations of the macrocycles which could be induced by different substituents or by metal complexation. The strategy adopted for the ligand synthesis is very flexible allowing several structural modifications. A small library of macrocyclic ligands possessing the same donor properties but with either C-1 or C-2 symmetry was synthesized. Cyclopropane products with both aromatic and aliphatic olefins were obtained in good yields and enantiomeric excesses up to 99%.
Resumo:
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.
Resumo:
Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.
Resumo:
Our recent studies have shown that the FoxM1B transcription factor is overexpressed in human glioma tissues and that the level of its expression correlates directly with glioma grade. However, whether FoxM1B plays a role in the early development of glioma (i.e., in transformation) is unknown. In this study, we found that the FoxM1B molecule causes cellular transformation and tumor formation in normal human astrocytes (NHA) immortalized by p53 and pRB inhibition. Moreover, brain tumors that arose from intracranial injection of FoxM1B-expressing immortalized NHAs displayed glioblastoma multiforme (GBM) phenotypes, suggesting that FoxM1B overexpression in immortalized NHAs not only transforms the cells but also leads to GBM formation. Mechanistically, our results showed that overexpression of FoxM1B upregulated NEDD4-1, an E3 ligase that mediates the degradation and downregulation of phosphatase and tensin homologue (PTEN) in multiple cell lines. Decreased PTEN in turn resulted in the hyperactivation of Akt, which led to phosphorylation and cytoplasmic retention of FoxO3a. Blocking Akt activation with phosphoinositide 3-kinase/Akt inhibitors inhibited the FoxM1B-induced transformation of immortalized NHAs. Furthermore, overexpression of FoxM1B in immortalized NHAs increased the expression of survivin, cyclin D1, and cyclin E, which are important molecules for tumor growth. Collectively, these results indicate that overexpression of FoxM1B, in cooperation with p53 and pRB inhibition in NHA cells, promotes astrocyte transformation and GBM formation through multiple mechanisms.
Resumo:
The discovery of grid cells in the medial entorhinal cortex (MEC) permits the characterization of hippocampal computation in much greater detail than previously possible. The present study addresses how an integrate-and-fire unit driven by grid-cell spike trains may transform the multipeaked, spatial firing pattern of grid cells into the single-peaked activity that is typical of hippocampal place cells. Previous studies have shown that in the absence of network interactions, this transformation can succeed only if the place cell receives inputs from grids with overlapping vertices at the location of the place cell's firing field. In our simulations, the selection of these inputs was accomplished by fast Hebbian plasticity alone. The resulting nonlinear process was acutely sensitive to small input variations. Simulations differing only in the exact spike timing of grid cells produced different field locations for the same place cells. Place fields became concentrated in areas that correlated with the initial trajectory of the animal; the introduction of feedback inhibitory cells reduced this bias. These results suggest distinct roles for plasticity of the perforant path synapses and for competition via feedback inhibition in the formation of place fields in a novel environment. Furthermore, they imply that variability in MEC spiking patterns or in the rat's trajectory is sufficient for generating a distinct population code in a novel environment and suggest that recalling this code in a familiar environment involves additional inputs and/or a different mode of operation of the network.
Resumo:
The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.