995 resultados para asymmetric synthesis
Resumo:
A new class of heterocycles pyrrolyl thiadiazoles, pyrrolyl oxadiazoles and pyrrolyl triazoles were prepared from arylsulfonylethenesulfonylacetic acid methyl ester and tested for their antimicrobial and cytotoxic activities. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, H-1 NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Mixed-species flocks of foraging birds have been documented from terrestrial habitats all over the world and are thought to form for either improved feeding efficiency or better protection from predators. Two kinds of flock participants are recognized: those that join other species ('followers') and are therefore likely to be the recipients of the benefits of flock participation and those that are joined ('leaders'). Through comparative analyses, using a large sample of flocks from around the world, we show that (1) 'followers' tend to be smaller, more insectivorous, and feed in higher strata than matched species that participate in flocks to a lesser extent and (2) 'leaders' tend to be cooperative breeders more often than matched species that are not known to lead flocks. Furthermore, meta-analyses of published results from across the world showed that bird species in terrestrial mixed-species flocks increase foraging rates and reduce vigilance compared to when they are solitary or in conspecific groups. Moreover, the increase in foraging rates is seen only with flock followers and not flock leaders. These findings suggest a role for predation in the evolution of mixed-species flocking. Species that are vulnerable to predation follow species whose vigilance they can exploit. By doing so, they are able to reduce their own vigilance and forage at higher rates. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nanoconfined synthesized crystalline fullerene mesoporous carbon (C60-FMC) with bimodal pore architectures of 4.95 nm and 10-15 nm pore sizes characterized by XRD, TEM, nitrogen adsorption/ desorption isotherm and solid-state NMR, and the material was used for protein immobilization. The solid-state 13C NMR spectrum of C60-FMC along with XRD, BET and TEM confirms the formation of fullerene mesoporous carbon structure C60-FMC. The immobilization of albumin (from bovine serum, BSA) protein biomolecule in a buffer solution at pH 4.7 was used to determine the adsorption properties of the C60-FMC material and its structural changes investigated by FT-IR. We demonstrated that the C60-FMC with high surface area and pore volumes have excellent adsorption capacity towards BSA protein molecule. Protein adsorption experiments clearly showed that the C60-FMC with bimodal pore architectures (4.95 nm and 10-15 nm) are suitable material to be used for protein adsorption
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Facile one-pot synthesis of thio and selenourea derivatives: A new class of potent urease inhibitors
Resumo:
A facile, one-pot synthesis of thio and selenourea derivatives from amines using tetrathiomolybdate 1 and tetraseleno-tungstate 2 as sulfur and selenium transfer reagents, respectively, is reported. The compounds were tested for their activity as urease inhibitors and some of the compounds showed potent activity in the nanomolar range towards jack bean urease. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
series of thiosugar derivatives (thiolevomannosans) derived from mannose were synthesized and their inhibitory activity was tested against alpha-mannosidase (jack bean). These inhibitors were found to be more potent than the well-known inhibitors like kifunensine and deoxymannojirimycin based on docking and biochemical studies. The sulfone derivative 10 was shown to be the best inhibitor of alpha-mannosidase with the K-i value of 350 nM. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Enantiospecific synthesis of ABC-ring systems of A-nor and abeo 4(3 -> 2) tetra and pentacyclic triterpenes has been accomplished starting from the readily available monoterpene (R)-carvone. (R)-Carvone was used as the B-ring of the target molecules. A lithium-liquid ammonia mediated cyclisation of delta,epsilon-unsaturated ester was employed for the cyclopentannulation at the C-5 and C-6 carbons of carvone and an RCM reaction was employed for the cyclohexannulation to generate the ABC-ring system of A-nor tetra and pentacyclic triterpenes. The strategy has been extended for the synthesis of the ABC-ring system of abeo 4(3 -> 2) tetra and pentacyclic triterpenes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A ruthenium(II) ethylene complex, trans-[Ru(H)(C2H4)- (dppm)(2)][BF4], hearing two 1,1-bis(diphenylphosphino) methane (dppm) ligands has been synthesized and structurally characterized using X-ray crystallography. In the molecular structure, the Ru-II center shows a distorted octahedral coordination geometry formed by four P atoms of the two chelating dppm ligands, a hydride, and an ethylene ligands. The four dppm P atoms are almost co-planar with the hydride and the ethylene ligands perpendicular to this plane. The C-C bond distance of the bound ethylene is 1.375(6) angstrom, which is elongated by 0.042 angstrom as compared to free ethylene (1.333(2) angstrom). The packing diagram of the complex shows two voids or channels, which are occupied by BF4- counterion and water molecules.
Resumo:
Enantiospecific synthesis of thaps-8-en-5-ol, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. (R)-Carvone has been employed as the chiral starting material and a combination of intramolecular alkyation and Criegec fragmentation have been employed for intramolecular stereospecific transfer of the chirality. An intramolecular diazoketone cyclopropanation and regioselective cyclopropane ring cleavage reactions have been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis.
Resumo:
The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620 - 800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPPBBT: PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm2). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
We provide a new unified framework, called "multiple correlated informants - single recipient" communication, to address the variations of the traditional Distributed Source Coding (DSC) problem. Different combinations of the assumptions about the communication scenarios and the objectives of communication result in different variations of the DSC problem. For each of these variations, the complexities of communication and computation of the optimal solution is determined by the combination of the underlying assumptions. In the proposed framework, we address the asymmetric, interactive, and lossless variant of the DSC problem, with various objectives of communication and provide optimal solutions for those. Also, we consider both, the worst-case and average-case scenarios.