972 resultados para androgenetic inheritance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have produced and analyzed transgenic birdsfoot trefoil (Lotus corniculatus L.) plants harboring antisense dihydroflavonol reductase (AS-DFR) sequences. In initial experiments the effect of introducing three different antisense Antirrhinum majus L. DFR constructs into a single recipient genotype (S50) was assessed. There were no obvious effects on plant biomass, but levels of condensed tannins showed a statistical reduction in leaf, stem, and root tissues of some of the antisense lines. Transformation events were also found, which resulted in increased levels of condensed tannins. In subsequent experiments a detailed study of AS-DFR phenotypes was carried out in genotype S33 using pMAJ2 (an antisense construct comprising the 5′ half of the A. majus cDNA). In this case, reduced tannin levels were found in leaf and stem tissues and in juvenile shoot tissues. Analysis of soluble flavonoids and isoflavonoids in tannin down-regulated shoot tissues indicated few obvious default products. When two S33 AS-DFR lines were outcrossed, there was an underrepresentation of transgene sequences in progeny plants and no examples of inheritance of an antisense phenotype were observed. To our knowledge, this is the first report of the genetic manipulation of condensed tannin biosynthesis in higher plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerosis is a complex disease resulting from the interaction of multiple genes. We have used the Ldlr knockout mouse model in an interspecific genetic cross to map atherosclerosis susceptibility loci. A total of 174 (MOLF/Ei × B6.129S7-Ldlrtm1Her) × C57BL/6J-Ldlrtm1Her backcross mice, homozygous for the Ldlr null allele, were fed a Western-type diet for 3 months and then killed for quantification of aortic lesions. A genome scan was carried out by using DNA pools and microsatellite markers spaced at ≈18-centimorgan intervals. Quantitative trait locus analysis of individual backcross mice confirmed linkages to chromosomes 4 (Athsq1, logarithm of odds = 6.2) and 6 (Athsq2, logarithm of odds = 6.7). Athsq1 affected lesions in females only whereas Athsq2 affected both sexes. Among females, the loci accounted for ≈50% of the total variance of lesion area. The susceptible allele at Athsq1 was derived from the MOLF/Ei genome whereas the susceptible allele at Athsq2 was derived from C57BL/6J. Inheritance of susceptible alleles at both loci conferred a 2-fold difference in lesion area, suggesting an additive effect of Athsq1 and Athsq2. No associations were observed between the quantitative trait loci and levels of plasma total cholesterol, high density lipoprotein cholesterol, non-high density lipoprotein cholesterol, insulin, or body weight. We provide strong evidence for complex inheritance of atherosclerosis in mice with elevated plasma low density lipoprotein cholesterol and show a major influence of nonlipoprotein-related factors on disease susceptibility. Athsq1 and Athsq2 represent candidate susceptibility loci for human atherosclerosis, most likely residing on chromosomes 1p36–32 and 12p13–12, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two isoforms of the human growth hormone receptor (hGHR), which differ in the presence (hGHRwt) or absence (hGHRd3) of exon 3, are expressed in the placenta. Specifically, three expression patterns are observed: only hGHRwt, only hGHRd3, or an approximately 1:1 combination of both isoforms. We investigated several potential regulatory mechanisms which might account for the expression of the hGHR isoforms. The frequency of hGHRd3 expression did not change when placentas from differing stages of gestation were examined, suggesting splicing was not developmentally regulated. However, when hGHR isoform expression patterns were examined in each component of a given placenta, it was evident that alternative splicing of exon 3 is individual-specific. Surprisingly, the individual-specific regulation of hGHR isoforms appears to be the result of a polymorphism in the hGHR gene. We analyzed hGHRwt and hGHRd3 expression in Hutterite pedigrees, and our results are consistent with a simple Mendelian inheritance of two differing alleles in which exon 3 is spliced in an "all-or-none" fashion. We conclude the alternative splicing of exon 3 in hGHR transcripts is the result of an unusual polymorphism which significantly alters splicing of the hGHR transcript and that the relatively high frequency (approximately 10%) of homozygous hGHRd3 expression suggests the possibility it may play a role in polygenic determined events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with autosomal recessive inheritance caused by a deficiency of the enzyme arylsulfatase B (ASB), which is involved in degradation of dermatan sulfate and chondroitin 4-sulfate. A MPS VI mouse model was generated by targeted disruption of the ASB gene. Homozygous mutant animals exhibit ASB enzyme deficiency and elevated urinary secretion of dermatan sulfate. They develop progressive symptoms resembling those of MPS VI in humans. Around 4 weeks of age facial dysmorphia becomes overt, long bones are shortened, and pelvic and costal abnormalities are observed. Major alterations in bone formation with perturbed cartilaginous tissues in newborns and widened, perturbed, and persisting growth plates in adult animals are seen. All major parenchymal organs show storage of glycosaminoglycans preferentially in interstitial cells and macrophages. Affected mice are fertile and mortality is not elevated up to 15 months of age. This mouse model will be a valuable tool for studying pathogenesis of MPS VI and may help to evaluate therapeutical approaches for lysosomal storage diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabidopsis plants transformed with an antisense construct of an Arabidopsis methyltransferase cDNA (METI) have reduced cytosine methylation in CG dinucleotides. Methylation levels in progeny of five independent transformants ranged from 10% to 100% of the wild type. Removal of the antisense construct by segregation in sexual crosses did not fully restore methylation patterns in the progeny, indicating that methylation patterns are subject to meiotic inheritance in Arabidopsis. Plants with decreased methylation displayed a number of phenotypic and developmental abnormalities, including reduced apical dominance, smaller plant size, altered leaf size and shape, decreased fertility, and altered flowering time. Floral organs showed homeotic transformations that were associated with ectopic expression of the floral homeotic genes AGAMOUS and APETALA3 in leaf tissue. These observations suggest that DNA methylation plays an important role in regulating many developmental pathways in plants and that the developmental abnormalities seen in the methyltransferase antisense plants may be due to dysregulation of gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic administration of estrogen to the Fischer 344 (F344) rat induces growth of large, hemorrhagic pituitary tumors. Ten weeks of diethylstilbestrol (DES) treatment caused female F344 rat pituitaries to grow to an average of 109.2 +/- 6.3 mg (mean +/- SE) versus 11.3 +/- 1.4 mg for untreated rats, and to become highly hemorrhagic. The same DES treatment produced no significant growth (8.9 +/- 0.5 mg for treated females versus 8.7 +/- 1.1 for untreated females) or morphological changes in Brown Norway (BN) rat pituitaries. An F1 hybrid of F344 and BN exhibited significant pituitary growth after 10 weeks of DES treatment with an average mass of 26.3 +/- 0.7 mg compared with 8.6 +/- 0.9 mg for untreated rats. Surprisingly, the F1 hybrid tumors were not hemorrhagic and had hemoglobin content and outward appearance identical to that of BN. Expression of both growth and morphological changes is due to multiple genes. However, while DES-induced pituitary growth exhibited quantitative, additive inheritance, the hemorrhagic phenotype exhibited recessive, epistatic inheritance. Only 5 of the 160 F2 pituitaries exhibited the hemorrhagic phenotype; 36 of the 160 F2 pituitaries were in the F344 range of mass, but 31 of these were not hemorrhagic, indicating that the hemorrhagic phenotype is not merely a consequence of extensive growth. The hemorrhagic F2 pituitaries were all among the most massive, indicating that some of the genes regulate both phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lack of efficient mechanisms for stable genetic transformation of medically important insects, such as anopheline mosquitoes, is the single most important impediment to progress in identifying novel control strategies. Currently available techniques for foreign gene expression in insect cells in culture lack the benefit of stable inheritance conferred by integration. To overcome this problem, a new class of pantropic retroviral vectors has been developed in which the amphotropic envelope is completely replaced by the G glycoprotein of vesicular stomatitis virus. The broadened host cell range of these particles allowed successful entry, integration, and expression of heterologous genes in cultured cells of Anopheles gambiae, the principle mosquito vector responsible for the transmission of over 100 million cases of malaria each year. Mosquito cells in culture infected with a pantropic vector expressing hygromycin phosphotransferase from the Drosophila hsp70 promoter were resistant to the antibiotic hygromycin B. Integrated provirus was detected in infected mosquito cell clones grown in selective media. Thus, pantropic retroviral vectors hold promise as a transformation system for mosquitoes in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms that initiate reproductive development after fertilization are not understood. Reproduction in higher plants is unique because it is initiated by two fertilization events in the haploid female gametophyte. One sperm nucleus fertilizes the egg to form the embryo. A second sperm nucleus fertilizes the central cell to form the endosperm, a unique tissue that supports the growth of the embryo. Fertilization also activates maternal tissue differentiation, the ovule integuments form the seed coat, and the ovary forms the fruit. To investigate mechanisms that initiate reproductive development, a female-gametophytic mutation termed fie (fertilization-independent endosperm) has been isolated in Arabidopsis. The fie mutation specifically affects the central cell, allowing for replication of the central cell nucleus and endosperm development without fertilization. The fie mutation does not appear to affect the egg cell, suggesting that the processes that control the initiation of embryogenesis and endosperm development are different. FIE/fie seed coat and fruit undergo fertilization-independent differentiation, which shows that the fie female gametophyte is the source of signals that activates sporophytic fruit and seed coat development. The mutant fie allele is not transmitted by the female gametophyte. Inheritance of the mutant fie allele by the female gametophyte results in embryo abortion, even when the pollen bears the wild-type FIE allele. Thus, FIE carries out a novel, essential function for female reproductive development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dystrophic cardiac calcinosis, an age-related cardiomyopathy that occurs among certain inbred strains of mice, involves myocardial injury, necrosis, and calcification. Using a complete linkage map approach and quantitative trait locus analysis, we sought to identify genetic loci determining dystrophic cardiac calcinosis in an F2 intercross of resistant C57BL/6J and susceptible C3H/HeJ inbred strains. We identified a single major locus, designated Dyscalc, located on proximal chromosome 7 in a region syntenic with human chromosomes 19q13 and 11p15. The statistical significance of Dyscalc (logarithm of odds score 14.6) was tested by analysis of permuted trait data. Analysis of BxH recombinant inbred strains confirmed the mapping position. The inheritance pattern indicated that this locus influences susceptibility of cells both to enter necrosis and to subsequently undergo calcification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either beta-cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new mutations, endosymbionts will show (i) faster sequence evolution and (ii) a possible shift in base composition reflecting mutational bias. Analyses of 16S rDNA of five independently derived endosymbiont clades show, in every case, faster evolution in endosymbionts than in free-living relatives. For aphid endosymbionts (genus Buchnera), coding genes exhibit accelerated evolution and unusually low ratios of synonymous to nonsynonymous substitutions compared to ratios for the same genes for enterics. This concentration of the rate increase in nonsynonymous substitutions is expected under the hypothesis of increased fixation of deleterious mutations. Polypeptides for all Buchnera genes analyzed have accumulated amino acids with codon families rich in A+T, supporting the hypothesis that substitutions are deleterious in terms of polypeptide function. These observations are best explained as the result of Muller's ratchet within small asexual populations, combined with mutational bias. In light of this explanation, two observations reported earlier for Buchnera, the apparent loss of a repair gene and the overproduction of a chaperonin, may reflect compensatory evolution. An alternative hypothesis, involving selection on genomic base composition, is contradicted by the observation that the speedup is concentrated at nonsynonymous sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important determinant of wheat grain quality is the hardness of the grain. The trait is controlled by a major locus, Ha, on the short arm of chromosome 5D. Purified starch granules from soft-grained wheats have associated with them 15-kDa polypeptides called grain softness proteins (GSPs) or "friabilins." Genes that encode one family of closely related GSP polypeptides - GSP-1 genes - were mapped using chromosome substitution lines to the group 5 chromosomes. An F2 population segregating for hard and soft alleles at the Ha locus on a near-isogenic background was used in a single-seed study of the inheritance of grain softness and of GSP-1 alleles. Grain softness versus grain hardness was inherited in a 3:1 ratio. The presence versus absence of GSPs in single seed starch preparations was coinherited with grain softness versus hardness. This showed that grain softness is primarily determined by seed, and not by maternal, genotype. In addition, no recombination was detected in 44 F2 plants between GSP-1 restriction fragment length polymorphisms and Ha alleles. Differences between hard and soft wheat grains in membrane structure and lipid extractability have been described and, of the three characterized proteins that are part of the mixture of 15-kDa polypeptides called GSPs, at least two, and probably all three, are proteins that bind polar lipids. The data are interpreted to suggest that the Ha locus may encode one or more members of a large family of lipid-binding proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inheritance of much early-onset Alzheimer disease (AD) has been linked to a dominant-acting locus on chromosome 14. Recently, the gene likely responsible for this genetic linkage has been identified and termed AD3. Five mutations have been found in AD3 that segregate with the disease phenotype in seven AD families and are not present in unaffected individuals. Here we report the existence of a gene encoding a seven transmembrane domain protein very similar to that encoded by AD3 in structure and sequence. This gene is located on chromosome 1, is expressed in a variety of tissues, including brain, and is predicted to harbor mutations causing nonchromosome 14 familial AD. The presence of several S/TPXX DNA binding motifs in both the AD3 protein and the AD3-like protein /AD4 protein suggests a possible role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. Ways in which mutations in either gene could lead to AD are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrogenesis, development from paternal but not maternal chromosomes, can be induced to occur in some organisms, including vertebrates, but has only been reported to occur naturally in interspecific hybrids of the Sicilian stick insect. Androgenesis has not been described previously in Drosophila. We now report the recovery of androgenetic offspring from Drosophila melanogaster females mutant for a gene that affects an oocyte- and embryo-specific alpha-tubulin. The androgenetic exceptions are X,X diploid females that develop from haploid embryos and express paternal markers on all 4 chromosomes. The exceptional females arise by fusion of haploid cleavage nuclei or failure of newly replicated haploid chromosomes to segregate, rather than fusion of two inseminating sperm. The frequency of androgenetic offspring is greatly enhanced by a partial loss-of-function mutant of the NCD (nonclaret disjunctional) microtubule motor protein, suggesting that wild-type NCD functions is pronuclear fusion. Diploidization of haploid paternal chromosome complements results in complete genetic homozygosity, which could facilitate studies of gene variation and mutational load in populations.