914 resultados para all-solid-state lasers
Resumo:
A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Multiwall carbon nanotubes (MWNTs) filled with Fe nanoparticles (NPs) have been synthesized by thermal chemical vapor deposition of ferrocene alone as the precursor. The MWNTs were grown at different temperatures: 980 and 800 degrees C. Characterization of as-prepared MWNTs was done by scanning and transmission electron microscopy, and X-ray diffraction. The transmission electron microscopy study revealed that Fe NPs encapsulated in MWNTs grown at 980 and 800 degrees C are spherical and rod shaped, respectively. Room-temperature vibrating sample magnetometer studies were done on the two samples up to a field of 1T. The magnetization versus magnetic field loop reveals that the saturation magnetization for the two samples varies considerably, almost by a factor of 4.6. This indicates that Fe is present in different amounts in the MWNTs grown at the two different temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Confinement and Surface specific interactions call induce Structures otherwise unstable at that temperature and pressure. Here we Study the groove specific water dynamics ill the nucleic acid sequences, poly-AT and poly-GC, in long B-DNA duplex chains by large scale atomistic molecular dynamics simulations, accompanied by thermodynamic analysis. While water dynamics in the major groove remains insensitive to the sequence differences, exactly the opposite is true for the minor groove water. Much slower water dynamics observed in the minor grooves (especially in the AT minor) call be attributed to all enhanced tetrahedral ordering (< t(h)>) of water. The largest value of < t(h)> in the AT minor groove is related to the spine of hydration found in X-ray Structure. The calculated configurational entropy (S-C) of the water molecules is found to be correlated with the self-diffusion coefficient of water in different region via Adam-Gibbs relation D = A exp(-B/TSC), and also with < t(h)>.
Resumo:
New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.
Resumo:
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P6(3)cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3-3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x <= 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The iodide-containing layered double hydroxides (LDHs) of Mg and Zn with AI crystallize by the inclusion of extensive positional disorder of I- ions in the interlayer region. I- ion given its poor charge to size ratio can neither screen effectively the positive charge nor participate in H-bonding with the metal hydroxide layers. Thereby the I- ions are not stabilized in sites close to the seat of positive charge of the metal hydroxide layers (6c), nor in sites that facilitate H-bonding (3b or 18h). On the other hand, OH- from water can do both and effectively displaces I- from the interlayer. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We describe an investigation of (Ba3MMWO9)-M-II-W-IV oxides for M-II = Ca, Zn, and other divalent metals and M-IV = Ti, Zr. In general, a 1:2-ordered 6H (hexagonal, P6(3)/mmc) perovskite structure is stabilized at high temperatures (1300 degrees C) for all of the (Ba3MTiWO9)-Ti-II oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba-2(Zn2/3Ti1/3)(W2/3Ti1/3)O-6, is obtained at 1200 degrees C for Ba3ZnTiWO9. Sr substitution for Ba in the latter stabilizes the cubic 3C structure instead of the 6H structure. A metastable Ba3CaZrWO9 that adopts the 3C (cubic, Fm (3) over barm) structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the present investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d(0)-induced distortion of metal-oxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the (Ba3MMWO9)-M-II-W-IV series.
Resumo:
We report the results of an in situ small-angle x-ray scattering (SAXS) study of the aggregation of gold nanoparticles formed by an interfacial reaction at the toluene-water interface. The SAXS data provide a direct evidence for aggregate formation of nanoparticles having 1.3 nm gold core and an organic shell that gives a core-core separation of about 2.5 nm. Furthermore, the nanoparticles do not occupy all the cites of 13-member cluster. This occupancy decreases with reaction time and indicate reorganization of the clusters that generates planner disklike structures. A gradual increase in fractal dimension from 1.82 to 2.05 also indicate compactification of cluster aggregation with reaction time, the final exponent being close to 2 expected for disklike aggregates.
Resumo:
Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.
Resumo:
In the title molecule, C14H10ClNO, all non-H atoms are coplanar (r.m.s deviation = 0.0266 angstrom). In the crystal, symmetry-related molecules are hydrogen bonded via intermolecular O-H center dot center dot center dot O interactions, forming chains along the b axis.
Resumo:
Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.