869 resultados para agent based model
Resumo:
Mestrado em Ciências Empresariais
Resumo:
Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research.
Resumo:
In the presented paper, the temporal and statistical properties of a Lyot filter based multiwavelength random DFB fiber laser with a wide flat spectrum, consisting of individual lines, were investigated. It was shown that separate spectral lines forming the laser spectrum have mostly Gaussian statistics and so represent stochastic radiation, but at the same time the entire radiation is not fully stochastic. A simple model, taking into account phenomenological correlations of the lines' initial phases was established. Radiation structure in the experiment and simulation proved to be different, demanding interactions between different lines to be described via a NLSE-based model.
Resumo:
Changing the traditional pattern of public procurement for an electronic paradigm is a radical innovation involving major organizational changes, the breaking up of traditional processes and practices, obsolescence of knowledge and skills. Going beyond the European Commission's recommendations, in 2009 Portugal pioneered in making e-procurement mandatory in the pre-award phase, in a European context of multiple technical standards and lack of interoperability of electronic platforms across the EU countries. Six years later, when the creation of a European e-procurement single market is a EU mission and a major legislative amendment is underway in Portugal, this study looks at the relationship between e-procurement and innovation in the Portuguese municipalities aiming to understand the extent into which the adoption of e-procurement embraced a real organizational change or, on the other hand, if it just represented a mere adaptation of the usual procurement practices. The study draws on data from an electronic survey to all municipalities in mainland Portugal and the analysis is mainly descriptive and exploratory. The paradigm shift in public procurement involves major organizational changes but, overall, the results suggest that most municipalities do not have a clear understanding of the innovative scope (depth and diversity) implied by e-procurement. E-procurement shows advantages over the paper-based model but an unbalanced perception of the innovation dimensions has influenced the implementation of e-procurement and the degree of organizational change.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
This comprehensive study explores the intricate world of 3D printing, with a focus on Fused Deposition Modelling (FDM). It sheds light on the critical factors that influence the quality and mechanical properties of 3D printed objects. Using an optical microscope with 40X magnification, the shapes of the printed beads is correlated to specific slicing parameters, resulting in a 2D parametric model. This mathematical model, derived from real samples, serves as a tool to predict general mechanical behaviour, bridging the gap between theory and practice in FDM printing. The study begins by emphasising the importance of geometric parameters such as layer height, line width and filament tolerance on the final printed bead geometry and the resulting theoretical effect on mechanical properties. The introduction of VPratio parameter (ratio between the area of the voids and the area occupied by printed material) allows the quantification of the variation of geometric slicing parameters on the improvement or reduction of mechanical properties. The study also addresses the effect of overhang and the role of filament diameter tolerances. The research continues with the introduction of 3D FEM (Finite Element Analysis) models based on the RVE (Representative Volume Element) to verify the results obtained from the 2D model and to analyse other aspects that affect mechanical properties and not directly observable with the 2D model. The study also proposes a model for the examination of 3D printed infill structures, introducing also an innovative methodology called “double RVE” which speeds up the calculation of mechanical properties and is also more computationally efficient. Finally, the limitations of the RVE model are shown and a so-called Hybrid RVE-based model is created to overcome the limitations and inaccuracy of the conventional RVE model and homogenization procedure on some printed geometries.
Resumo:
Il crescente numero di attacchi condotti contro sistemi e servizi informatici richiede nuove strategie per la cybersicurezza. In questa tesi si prende in considerazione uno degli approcci più moderni per questa attività, basato su architetture Zero Trust, che deperimetrizzano i sistemi e mirano a verificare ogni tentativo di accesso alle risorse indipendentemente dalla provenienza locale o remota della richiesta. In tale ambito, la tesi propone una nuova forma di microsegmentazione agent-based basata su overlay network, con l'obiettivo di migliorare la scalabilità e la robustezza delle soluzioni esistenti, ad oggi messe in secondo piano in favore della facilità di configurazione. Una consistente serie di test dimostra che l'approccio descritto, attuabile in molteplici tipologie di sistemi cloud, è in grado di garantire, oltre alla sicurezza, scalabilità al crescere dei nodi partecipanti, robustezza evitando punti unici di fallimento e semplicità di configurazione.
Resumo:
Lo scopo della ricerca è quello di sviluppare un metodo di design che integri gli apporti delle diverse discipline di architettura, ingegneria e fabbricazione all’interno del progetto, utilizzando come caso di studio l’uso di una tettonica ad elementi planari in legno per la costruzione di superfici a guscio da utilizzare come padiglioni temporanei. La maniera in cui ci si propone di raggiungere tale scopo è tramite l’utilizzo di un agent based system che funge da mediatore tra i vari obbiettivi che si vogliono considerare, in questo caso tra parametri estetici, legati alla geometria scelta, e di fabbricazione. Si sceglie di applicare questo sistema allo studio di una struttura a guscio, che grazie alla sua naturale rigidezza integra forma e capacità strutturale, tramite una tassellazione planare della superficie stessa. Il sistema studiato si basa sull’algoritmo di circle relaxation, che viene integrato tramite dei comportamenti che tengano conto della curvatura della superficie in questione e altri comportamenti scelti appositamente per agevolare il processo di tassellazione tramite tangent plane intersection. La scelta di studiare elementi planari è finalizzata ad una maggiore facilità di fabbricazione ed assemblaggio prevedendo l’uso di macchine a controllo numerico per la fabbricazione e un assemblaggio interamente a secco e che non necessita di impalcature . Il risultato proposto è quello quindi di un padiglione costituito da elementi planari ricomponibili in legno, con particolare attenzione alla facilità e velocità di montaggio degli stessi, utile per possibili strutture temporanee e/o di emergenza.
Resumo:
In this paper, we introduce B2DI model that extends BDI model to perform Bayesian inference under uncertainty. For scalability and flexibility purposes, Multiply Sectioned Bayesian Network (MSBN) technology has been selected and adapted to BDI agent reasoning. A belief update mechanism has been defined for agents, whose belief models are connected by public shared beliefs, and the certainty of these beliefs is updated based on MSBN. The classical BDI agent architecture has been extended in order to manage uncertainty using Bayesian reasoning. The resulting extended model, so-called B2DI, proposes a new control loop. The proposed B2DI model has been evaluated in a network fault diagnosis scenario. The evaluation has compared this model with two previously developed agent models. The evaluation has been carried out with a real testbed diagnosis scenario using JADEX. As a result, the proposed model exhibits significant improvements in the cost and time required to carry out a reliable diagnosis.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
PURPOSE: To determine the diagnostic value of the intravascular contrast agent gadocoletic acid (B-22956) in three-dimensional, free breathing coronary magnetic resonance angiography (MRA) for stenosis detection in patients with suspected or known coronary artery disease. METHODS: Eighteen patients underwent three-dimensional, free breathing coronary MRA of the left and right coronary system before and after intravenous application of a single dose of gadocoletic acid (B-22956) using three different dose regimens (group A 0.050 mmol/kg; group B 0.075 mmol/kg; group C 0.100 mmol/kg). Precontrast scanning followed a coronary MRA standard non-contrast T2 preparation/turbo-gradient echo sequence (T2Prep); for postcontrast scanning an inversion-recovery gradient echo sequence was used (real-time navigator correction for both scans). In pre- and postcontrast scans quantitative analysis of coronary MRA data was performed to determine the number of visible side branches, vessel length and vessel sharpness of each of the three coronary arteries (LAD, LCX, RCA). The number of assessable coronary artery segments was determined to calculate sensitivity and specificity for detection of stenosis > or = 50% on a segment-to-segment basis (16-segment-model) in pre- and postcontrast scans with x-ray coronary angiography as the standard of reference. RESULTS: Dose group B (0.075 mmol/kg) was preferable with regard to improvement of MR angiographic parameters: in postcontrast scans all MR angiographic parameters increased significantly except for the number of visible side branches of the left circumflex artery. In addition, assessability of coronary artery segments significantly improved postcontrast in this dose group (67 versus 88%, p < 0.01). Diagnostic performance (sensitivity, specificity, accuracy) was 83, 77 and 78% for precontrast and 86, 95 and 94% for postcontrast scans. CONCLUSIONS: The use of gadocoletic acid (B-22956) results in an improvement of MR angiographic parameters, asssessability of coronary segments and detection of coronary stenoses > or = 50%.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Resumo:
The model of Questions Answering (Q&A) for eLearning is based on collaborative learning through questions that are posed by students and their answers to that questions which are given by peers, in contrast with the classical model in which students ask questions to the teacher only. In this proposal we extend the Q&A model including the social presence concept and a quantitative measure of it is proposed; besides it is considered the evolution of the resulting Q&A social network after the inclusion of the social presence and taking into account the feedback on questions posed by students and answered by peers. The social network behaviorwas simulated using a Multi-Agent System to compare the proposed social presence model with the classical and the Q&A models