951 resultados para Zoning--Massachusetts--Wayland--Maps
Resumo:
We used hyperspectral imaging to study short-term effects of bioturbation by lugworms (Arenicola marina) on the surficial biomass of microphytobenthos (MPB) in permeable marine sediments. Within days to weeks after the addition of a lugworm to a homogenized and recomposed sediment, the average surficial MPB biomass and its spatial heterogeneity were, respectively, 150 - 250% and 280% higher than in sediments without lugworms. The surficial sediment area impacted by a single medium-sized lugworm (~4 g wet weight) over this time-scale was at least 340 cm**2. While sediment reworking was the primary cause of the increased spatial heterogeneity, experiments with lugworm-mimics together with modeling showed that bioadvective porewater transport from depth to the sediment surface, as induced by the lugworm ventilating its burrow, was the main cause of the increased surficial MPB biomass. Although direct measurements of nutrient fluxes are lacking, our present data show that enhanced advective supply of nutrients from deeper sediment layers induced by faunal ventilation is an important mechanism that fuels high primary productivity at the surface of permeable sediments even though these systems are generally characterized by low standing stocks of nutrients and organic material.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility (AMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation.
Resumo:
Based on data from R.V. Pelagia, R.V. Sonne and R.V. Meteor multibeam sonar surveys, a high resolution bathymetry was generated for the Mozambique Ridge. The mapping area is divided into five sheets, one overview and four sub-sheets. The boundaries are (west/east/south/north): Sheet 1: 28°30' E/37°00' E/36°20' S/24°50' S; Sheet 2: 32°45' E/36°45' E/28°20' S/25°20' S; Sheet 3: 31°30' E/36°45' E/30°20' S/28°10' S; Sheet 4: 30°30' E/36°30' E/33°15' S/30°15' S; Sheet 5: 28°30' E/36°10' E/36°20' S/33°10' S. Each sheet was generated twice: one from swath sonar bathymetry only, the other one is completed with depths from ETOPO2 predicted bathymetry. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area (sheet 1) with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. The grid formats are NetCDF (Network Common Data Form) and ASCII (ESRI ArcGIS exchange format). The Maps are formatted as jpg-images and as small sized PNG (Portable Network Graphics) preview images. The provided maps have a paper size of DIN A0 (1189 x 841 mm).
Resumo:
There are about 30 species of planktonic Foraminifera, as contrasted with the more than 4200 benthic species in the oceans of the world. Most of the planktonic species belong to the families Globigerinidae and Globorotaliidae. Of the 30 species, 9 occur in Antarctic and Subantarctic waters; however, none of these cold-water species are restricted to the Southern Ocean, except possibly the newly recognized Globorotalia cavernula (Be, 1967b). These species are distributed in broad zones of similar temperature in both the Northern and Southern Hemispheres. Hence, it is not possible to refer to these species as endemic to the Antarctic or Subantarctic, although some of them do appear in very high concentrations of 10 specimens/m**3 or more in the Antarctic regions. The plankton samples upon which the accompanying maps are based were collected between 1960 and 1965 on the research vessels Eltanin of the National Science Foundation (U.S. Antarctic Research Program), and Vema and Conrad of the Lamont Geological Observatory. All surface (0 m to 10 m) and vertical (0 m to 300 m) tows were obtained with plankton nets of uniform mesh size and material (NITEX202 = 202 µm mesh-aperture width) and were provided with flowmeters for quantitative readings of amounts of water filtered.
Resumo:
Based on data from R/V Sonne multibeam sonar surveys in 2005 a high resolution bathymetry was generated for the Mozambique Basin. The area covers approx. 466,475 sqkm. The mapping area is divided into four sheets with boundaries (west/east/south/north): Sheet I (north-west), 37:00/39:45/-24:00/-20:20; Sheet II (north-east), 39:45/42:30/-24:00/-20:20; Sheet III (south-west), 37:00/39:45/-27:40/-24:00; Sheet IV (south-east), 39:45/42:30/-27:40/-24:00. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. Moreover the measured bathymetry was combined and compared with GEBCO bathymetry and predicted bathymetry, derived from altimeter satellites. The provided maps have a paper size of DIN A0 (1188.9 x 841 mm).
Resumo:
Photogrammetric surveys have been made and maps drawn of a number of glaciers in the eastern Alps, among them the Waxeggkees in the Zillertal Alps of Tyrol, at approximately ten-year intervals since 1950. Terrestrial photogrammetry was used for the pictures taken in 1950, 1960, 1980, 1989 and 2000, while aerial photogrammetry was employed for the 1969 photo. These maps were subsequently used to calculate the changes in area, elevation and volume for elevational zones of 50 m. The numeric values are given in two tables. The illustration of surface changes in Waxeggkees is continued cartographically on 5 map sheets at the scale of 1 : 15.000 and a vertical interval of the contour lines of 50 m. Changes in glacier area are marked in light red to indicate a decrease in area, and in light blue for an increase. Changes in elevation can only be indicated indirectly, namely in the form of vertical interval bands, referring to the surface areas that arise due to the relocation of the contour lines, resulting from an elevational change. Decrease in elevation is indicated in red, increase in blue, on 100 m contour lines.
Resumo:
The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003-2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.