976 resultados para Yang-baxter Equation
Resumo:
We use a five-dimensional approach to Galilean covariance to investigate the non-relativistic Duffin-Kemmer-Petiau first-order wave equations for spinless particles. The corresponding representation is generated by five 6 × 6 matrices. We consider the harmonic oscillator as an example.
Resumo:
Exact solutions are found for the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions. The method works for the ground state or for the lowest orbital state with l = j - 1/2 , for any j.
Resumo:
The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.
Resumo:
The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling constant gs allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson exchange. The effective interaction in ladder approximation up to order g4 s is discussed in detail. It is shown that the effective interaction naturally yields the box counterterm required to be introduced ad hoc previously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional quantities.
Resumo:
We present the exact construction of Riemannian (or stringy) instantons, which are classical solutions of 2D Yang-Mills theories that interpolate between initial and final string configurations. They satisfy the Hitchin equations with special boundary conditions. For the case of U(2) gauge group those equations can be written as the sinh-Gordon equation with a delta-function source. Using the techniques of integrable theories based on the zero curvature conditions, we show that the solution is a condensate of an infinite number of one-solitons with the same topological charge and with all possible rapidities.
Resumo:
We calculate the effective action for nonabelian gauge bosons up to quartic order using WZW-like open superstring field theory. After including level zero and level one contributions, we obtain with 75% accuracy the Yang-Mills quartic term. We then prove that the complete effective action reproduces the exact Yang-Mills quartic term by analytically performing a summation over the intermediate massive states. © SISSA/ISAS 2003.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, θ) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the D = 10 superstring. © SISSA/ISAS 2004.
The Dirac-Hestenes equation for spherical symmetric potentials in the spherical and Cartesian gauges
Resumo:
In this paper, using the apparatus of the Clifford bundle formalism, we show how straightforwardly solve in Minkowski space-time the Dirac-Hestenes equation - which is an appropriate representative in the Clifford bundle of differential forms of the usual Dirac equation - by separation of variables for the case of a potential having spherical symmetry in the Cartesian and spherical gauges. We show that, contrary to what is expected at a first sight, the solution of the Dirac-Hestenes equation in both gauges has exactly the same mathematical difficulty. © World Scientific Publishing Company.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P = .001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified. © 2007 by The American Society of Human Genetics. All rights reserved.
Resumo:
Nilpotency of the pure spinor BRST operator in a curved background implies superspace equations of motion for the background. By computing one-loop corrections to nilpotency for the heterotic sigma model, the Yang-Mills Chern-Simons corrections to the background are derived. © 2008 SISSA.
Resumo:
We analyze here the spin and pseudospin symmetry for the antinucleon spectra solving the Dirac equation with scalar and vector Wood-Saxon potentials. In relativistic nuclear mean field theories where these potentials have large magnitudes and opposite signs we show that contrary to the nucleon case where pseudospin interaction is never very small and cannot be treated perturbatively, for antinucleon systems this interaction is perturbative and an exact pseudospin symmetry is possible. This result manifests the relativistic nature of the nuclear pseudospin symmetry. © 2009 American Institute of Physics.
Resumo:
Rational solutions of the Painlevé IV equation are constructed in the setting of pseudo-differential Lax formalism describing AKNS hierarchy subject to the additional non-isospectral Virasoro symmetry constraint. Convenient Wronskian representations for rational solutions are obtained by successive actions of the Darboux-Bäcklund transformations. ©2010 American Institute of Physics.
Resumo:
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.
Resumo:
The asymptotic stability of the null solution of the equation ẋ(t) = -a(t)x(t)+b(t)x([t]) with argument [t], where [t] designates the greatest integer function, is studied by means of dichotomic maps. © 2010 Academic Publications.