969 resultados para Wood chemical properties
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.
Resumo:
Peruvian carrot and cassava starches were isolated, adjusted to 30 and 35% moisture, and heatedat 90°C for 8 h. Structural and physicochemical characteristics of the treated starches wereevaluated and compared. High performance anion exchange chromatography with pulsedamperometric detector (HPAEC-PAD), gel permeation chromatography (GPC), and amylosecontent, revealed that the HMT did not change the chemical structures of the starches. A largeagglomeration of granules was observed from SEM, particularly in the Peruvian carrot starch.Crystalline patterns in Peruvian carrot and cassava starches changed from B to C and CAto A,respectively. Relative crystallinity decreased from 30 to 25% in Peruvian Carrot starch, andincreased from 35 to 37% in cassava starch adjusted to 30% moisture. SF and peak viscositydecreased, breakdown was almost completely eliminated (particularly in the Peruvian carrotstarch), and final viscosity increased. WAI and WSI increased as moisture levels of bothstarches increased. Gelatinization temperatures increased and enthalpy decreased. Degrees ofgelatinization increased as the moisture level increased, reaching 33 and 72% in the cassavaand Peruvian carrot starches, respectively. HMT strengthened the intra- and intermolecularinteractions of starches and increased their stability during heating and shearing, but also causeda partial gelatinization in the starches, particularly in Peruvian carrot starch.
Resumo:
Due to growing concerns for reducing environmental damage caused by the use of non-renewable raw materials, there is a growing demand for research related to aggregate technology with environmental preservation. Thus, the use of non-renewable materials and less aggressive materials has been gaining attention. About composite materials, the exchange of synthetic fibers by natural fibers, especially vegetable fiber as reinforcement, has been increasing, due to its physical-chemical properties such as mechanical strength, nontoxic, low cost, low density, processing flexibility, non-abrasive to the process equipment, requiring simple surface treatments, etc. This objective was to process composites reinforced with long fibers of sapegrass in epoxy matrix and characterize the composites through mechanical tests. Three groups of composites were prepared according to the treatment received by the reinforcement: without treatment, alkali treatment at concentration of 5% w/v and alkali treatment at 10% w/v concentration. The materials were analyzed by tensile and flexural, and tests also optical microscopy and scanning electron microscopy (SEM). The results were statistically analyzed. As the main result, the alkali treatment of 5% in the sapegrass fibers increases the tensile and flexural strength, as a consequence of the improve adhesion between matrix and reinforcement
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sealer 26® cement contains bisphenol epoxy resin associated with calcium hydroxide, presenting smaller radiopacity than other endodontic cements. Aiming to improve this property, iodoform has been added in its composition. However, this addition's possible changes in physical and chemical properties still need to be studied. OBJECTIVE: To evaluate the apical sealing ability, solubility, and pH of Sealer 26® alone or with iodoform, at several proportions. MATERIAL AND METHODS: Three experimental mixtures of Sealer 26®, alone or with iodoform, were prepared and subjected to solubility test. Additionally, these combinations were inserted into polyethylene tubes and immersed in distilled water, and, their pH was evaluated after 24-h and 7-day periods. Subsequently, forty roots of extracted lower incisors subdivided into four groups of 10 specimens each, were retrograde filled with one of the previously described mixtures and gutta-percha points. The roots were immersed in Rhodamine B, under vacuum, for 72 hours. After this period, the specimens were longitudinally sectioned, root fragments photographed, these images scanned, and apical infiltration measured by Image tool software. The obtained data were subjected to statistical analysis, at a significance level of 5%. RESULTS: Marginal leakage and solubility tests did not show any difference among the experimental groups (p > 0.05). pH analysis was only statistically different at 24-h period and between Sealer 26® alone and 1.1g iodoform group (p < 0.05). CONCLUSION: The presence of iodoform in Sealer 26®, at the used proportions, did not alter the solubility, apical marginal leakage and pH properties of the original cement.