846 resultados para Wear simulators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface coatings and treatments have been used to reduce material loss of components in bubbling fluidized bed combustors (FBCs). The performance of protective coatings in FBC boilers and laboratory simulations is reviewed. Important coating properties to minimize wastage appear to be high hardness, low oxidation rate, low porosity, high adhesion and sufficient thickness to maintain protection for a long period. Economic considerations and criteria for choosing a suitable coating or treatment are discussed for the different types of bubbling FBC. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of temperature on tribological properties of plasma-sprayed Al-Cu-Fe quasicrystal (QC) coating after laser re-melting treatment. The laser treatment resulted in a more uniform, denser and harder microstructure than that of the as-sprayed coatings. Tribological experiments on the coatings were conducted under reciprocating motion at high frequency in the temperature range from 25 to 650 degreesC. Remarkable influence of temperature on the friction behavior of the coating was recorded and analyzed. Microstructural analysis indicated that the wear mechanisms of the re-melted QC coatings changed from abrasive wear at room temperature, to adhesive wear at 400 degreesC and severe adhesive wear at 650 degreesC owing to the material transfer of the counterpart ball. It was also observed that the ratio of the icosahedral (i)-phase to beta-Al-50(Fe,CU)(50) phase in the coating was higher after test at 400 'C than that at 650 'C. The variation of the ratio UP of coating and of the property of the counterpart ball and coating with the temperature are the two main factors influencing the wear mechanisms and value of the friction coefficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The age-strengthening 2024 aluminum alloy was modified by a combination of plasma-based ion implantation (PBII) and solution-aging treatments. The depth profiles of the implanted layer were investigated by X-ray photoelectron spectroscopy (XPS). The structure was studied by glancing angle X-ray diffraction (GXRD). The variation of microhardness with the indenting depth was measured by a nanoindenter. The wear test was carried on with a pin-on-disk wear tester. The results revealed that when the aluminum alloys were implanted with nitrogen at the solution temperature, then quenched in the vacuum chamber followed by an artificial aging treatment for an appropriate time, the amount of AIN precipitates by the combined treatment were more than that of the specimen implanted at ambient temperature. Optimum surface mechanical properties were obtained. The surface hardness was increased and the weight loss in a wear test decreased too.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thinning of heat-exchanger tubes by erosion-corrosion has been a problem in fluidized bed combustors (FBCs), particularly at lower metal temperatures where thicker, mechanically protective oxide scales are unable to form. Many laboratory-scale tests have shown a decrease in material loss at higher temperatures, in a similar manner to FBC boilers, but also show a decrease in wastage at low temperatures (e.g. 200°C) which has not been detected in boilers. It has been suggested that this difference is due to laboratory tests being carried out isothermally whereas in a FBC boiler the fluidized bed is considerably hotter than the metal heat exchanger tubing. In this laboratory study the simulation was therefore improved by internally cooling one of the two low carbon steel specimens. These were rotated in a horizontal plane within a lightly fluidized bed with relative particle velocities of 1.3-2.5 m s-1. Tests were carried out over a range of bed temperatures (200-500°C) and cooled specimen surface temperatures (115-500°C), with a maximum temperature difference between the two of 320°C. Although specimens exposed isothermally still showed maximum wastage at intermediate temperatures (about 350°C), those which were cooled showed high levels of wastage at temperatures as low as 200°C in a similar manner to FBC boilers. Cooling may modify the isothermal erosion-corrosion curve, causing it to broaden and the maximum wastage rate to shift to lower temperatures. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wastage behaviour of four low alloy steels, suitable for use as evaporator tubing in industrial atmospheric fluidized bed combustors (AFBCs), was examined in a laboratory-scale test rig. Specimens exposed in the test apparatus experienced a high flux of impacts at low particle velocities similar to conditions in a FBC boiler. The influence of time, velocity and temperature on the wastage behaviour was examined and incubation times and velocity exponents were determined and their values discussed. Since high-temperature oxidation played an important role in this process, the short-term oxidation rate of each of the steels was measured. The mechanisms of material loss across the temperature range were discussed and the behaviour of the low alloy steels in the current work was compared with that of high alloy and stainless steels in earlier studies. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of a study of the wear of candidate heat exchanger tube materials for use in fluidized bed combustors, two similar laboratory-scale rigs have been built and characterized. Specimens of selected alloys are carried on counter-rotating rotors immersed in a fluidized bed, and are exposed to particle impact velocities of up to approximately 3 ms-1 at temperatures up to 1000°C. The performance of this design of apparatus has been investigated in detail. The effects of several experimental variables have been studied, including angle of particle impact, specimen speed, position of the rotor within the fluidized bed, duration of exposure, bed material particle size, degradation of the bed material, degree of fluidization of the bed, and size of specimen. In many cases the results obtained with steel specimens at elevated temperatures are similar to those observed with polymeric specimens at low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been performed of the erosion of aluminium by silica sand particles at a velocity of 4.5 m s-1, both air-borne and in the form of a water-borne slurry. Measurements made under similar experimental conditions show that slurry erosion proceeds at a rate several times that of air-borne erosion, the ratio of the two rates depending strongly on the angle of impact. Sand particles become embedded into the metal surface during air-borne particle erosion, forming a composite layer of metal and silica, and provide the major cause of the difference in wear rate. The embedded particles giving rise to surface hardening and a significant reduction in the erosion rate. Embedment of erodent particles was not observed during slurry erosion. Lubrication of the impacting interfaces by water appears to have minimal effect on the wear of aluminium by slurry erosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate materials studied. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1 < d < 2 μm thick, with associated electrical resistivity in the range 108 < ρ < 1012 Ω·cm, coefficient of friction <0.1 and surface RMS roughness as low as 2 A. The results are discussed with respect to surface pre-treatment, ion surface bombardment, interfacial reactivity and changes in plasma gas breakdown processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pin on cylinder wear rig has been built with precision stepping motor drives to both rotary and axial motions which enable accurate positional control to be achieved. Initial experiments using sapphire indenters running against copper substrates have investigated the build up of a single wear groove by repeated sliding along the same track. An approximate three dimensional ploughing analysis is also presented and the results of theory and experiment compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models. Aluminum film and two kinds of substrates; i.e. glass and silicon, are studied. Nanoindentation XP II and continuous stiffness mode are used during the experiments. In order to avoid the influence of the Oliver and Pharr method used in the experiments, the experiment data are analyzed with the constant Young's modulus assumption and the equal hardness assumption. The volume fraction model (CZ model) proposed by Fabes et al. (1992) is used and modified to analyze the measured hardness. The method proposed by Doerner and Nix (DN formula) (1986) is modified to analyze the measured Young's modulus. Two kinds of modified empirical formula are used to predict the present experiment results and those in the literature, which include the results of two kinds of systems, i.e., a soft film on a hard substrate and a hard film on a soft substrate. In the modified CZ model, the indentation influence angle, phi, is considered as a relevant physical parameter, which embodies the effects of the indenter tip radius, pile-up or sink-in phenomena and deformation of film and substrate.