944 resultados para Water resources development -- Catalonia -- Begur
Resumo:
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C.
Resumo:
In this paper are identified several factors which affect a potential user's willingness to use recycled water for agricultural irrigation. This study is based on the results of a survey carried out among farmers in the island of Crete, Greece. It was found that a higher level of income and education are positively correlated with a respondent's willingness to use recycled water. Income and education are also positively correlated with a potential user's sensitivity to information on the advantages of using non-conventional water resources. Overall, extra information on the advantages of recycled water has a statistically significant impact on reported degrees of willingness to use recycled water.
Resumo:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.
Resumo:
Water resources are under stress in many regions due to increasing demands and, in places, falling quality. Climate change has the potential to change the risks of water stress.1 The focus in this section is on strategic definitions of water stress, which are based on generalized indicators of the amount of water that is available and the demands on that resource. Operational definitions, on the other hand, are typically based on the reliability of the supply of appropriate quality water and are strongly determined by local conditions.
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in Sao Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A. allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%). The results revealed that 70% of A. caviare, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern.
Resumo:
Giardia duodenalis is a protozoan that parasitizes humans and other mammals and causes giardiasis. Although its isolates have been divided into seven assemblages, named A to G, only A and B have been detected in human faeces. Assemblage A isolates are commonly divided into two genotypes, AI and AII. Even though information about the presence of this protozoan in water and sewage is available in Brazil, it is important to verify the distribution of different assemblages that might be present, which can only be done by genotyping techniques. A total of 24 raw and treated sewage, surface and spring water samples were collected, concentrated and purified. DNA was extracted, and a nested PCR was used to amplify an 890 bp fragment of the gdh gene of G. duodenalis, which codes for glutamate dehydrogenase. Positive samples were cloned and sequenced. Ten out of 24 (41.6%) samples were confirmed to be positive for G. duodenalis by sequencing. Phylogenetic analysis grouped most sequences with G. duodenalis genotype AII from GenBank. Only two raw sewage samples presented sequences assigned to assemblage B. In one of these samples genotype AII was also detected. As these assemblages/genotypes are commonly associated to human giardiasis, the contact with these matrices represents risk for public health.
Resumo:
For the diagnosis and prognosis of the problems of quality of life, a multidisciplinary ecosystemic approach encompasses four dimensions of being-in-the-world, as donors and recipients: intimate, interactive, social and biophysical. Social, cultural and environmental vulnerabilities are understood and dealt with, in different circumstances of space and time, as the conjugated effect of all dimensions of being-in-the-world, as they induce the events (deficits and assets), cope with consequences (desired or undesired) and contribute for change. Instead of fragmented and reduced representations of reality, diagnosis and prognosis of cultural, educational, environmental and health problems considers the connections (assets) and ruptures (deficits) between the different dimensions, providing a planning model to develop and evaluate research, teaching programmes, public policies and field projects. The methodology is participatory, experiential and reflexive; heuristic-hermeneutic processes unveil cultural and epistemic paradigms that orient subject-object relationships; giving people the opportunity to reflect on their own realities, engage in new experiences and find new ways to live better in a better world. The proposal is a creative model for thought and practice, providing many opportunities for discussion, debate and development of holistic projects integrating different scientific domains (social sciences, psychology, education, philosophy, etc.).
Resumo:
The eddy covariance method was used to measure energy and water balance of a plantation of Eucalyptus (grandis x urophylla) hybrids over a 2 year period. The average daily evaporation rates were 5.4 (+/- 2.0) mm day(-1) in summer, but fell to 1.2 (+/- 0.3) mm day(-1) in winter. In contrast, the sensible heat flux was relatively low in summer but dominated the energy balance in winter. Evaporation accounted for 80% and 26% of the available energy, in summer and winter respectively. The annual evaporation was 82% (1124 mm) and 96% (1235 mm) of the annual rainfall recorded during the first and second year, respectively. Daily average canopy and aerodynamic conductance to water vapour were in the summer 51.9 (+/- 38.4) mm s(-1) 84.1 (+/- 25.6) mm s(-1), respectively; and in the winter 6.0 (+/- 10.5) mm s(-1) and 111.6 (+/- 24.6) mm s(-1), respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Triggered seismicity is commonly associated with deep water reservoirs or injection wells where water is injected at high pressure into the reservoir rock. However, earth tremors related solely to the opening of groundwater wells are extremely rare. Here we present a clear case of seismicity induced by pore-pressure changes following the drilling of water wells that exploit a confined aquifer in the intracratonic Parana Basin of southeastern Brazil. Since 2004, shallow seismic activity, with magnitudes up to 2.9 and intensities V MM, has been observed near deep wells (120-200 m) that were drilled in early 2003 near the town of Bebedouro. The wells were drilled for irrigation purposes, cross a sandstone layer about 60-80 m thick and extract water from a confined aquifer in fractured zones between basalt flow layers. Seismic activity, mainly event swarms, has occurred yearly since 2004, mostly during the rainy season when the wells are not pumped. During the dry season when the wells are pumped almost continuously, the activity is very low. A seismographic network, installed in March 2005, has located more than 2000 microearthquakes. The events are less than 1 km deep (mostly within the 0.5 km thick basalt layer) and cover an area roughly 1.5 km x 5 km across. The seismicity generally starts in a small area and expands to larger distances with an equivalent hydraulic diffusivity ranging from 0.06 to 0.6 m(2)/s. Geophysical and geothermal logging of several wells in the area showed that water from the shallow sandstone aquifer enters the well at the top and usually forms waterfalls. The waterfalls flow down the sides of the wells and feed the confined, fractured aquifer in the basalt layer at the bottom. Two seismic areas are observed: the main area surrounds several wells that are pumped continuously during the dry season, and a second area near another well (about 10 km from the first area) that is not used for irrigation and not pumped regularly. The main area displays cyclic annual activity, but the second area does not. We explain the earthquake swarms as being triggered by pore pressure diffusion in the fractured basalt layer due to additional pressure from the newly connected surface aquifer. This reaches critically prestressed areas up to a few kilometers away from the wells. During periods of continuous pumping, the reduction of pore pressure in the confined aquifer stops the seismic activity. Our study suggests that this kind of activity may be more common than previously thought and implies that many other cases of small tremors associated with the drilling of water wells may have gone unnoticed.
Resumo:
The regimen of environmental flows (EF) must be included as terms of environmental demand in the management of water resources. Even though there are numerous methods for the computation of EF, the criteria applied at different steps in the calculation process are quite subjective whereas the results are fixed values that must be meet by water planners. This study presents a friendly-user tool for the assessment of the probability of compliance of a certain EF scenario with the natural regimen in a semiarid area in southern Spain. 250 replications of a 25-yr period of different hydrological variables (rainfall, minimum and maximum flows, ...) were obtained at the study site from the combination of Monte Carlo technique and local hydrological relationships. Several assumptions are made such as the independence of annual rainfall from year to year and the variability of occurrence of the meteorological agents, mainly precipitation as the main source of uncertainty. Inputs to the tool are easily selected from a first menu and comprise measured rainfall data, EF values and the hydrological relationships for at least a 20-yr period. The outputs are the probabilities of compliance of the different components of the EF for the study period. From this, local optimization can be applied to establish EF components with a certain level of compliance in the study period. Different options for graphic output and analysis of results are included in terms of graphs and tables in several formats. This methodology turned out to be a useful tool for the implementation of an uncertainty analysis within the scope of environmental flows in water management and allowed the simulation of the impacts of several water resource development scenarios in the study site.
Resumo:
Smart water metering technologies for residential buildings offer, in principle, great opportunities for sustainable urban water management. However, much of this potential is as yet unrealized. Despite that several ICT solutions have already been deployed aiming at optimum operations on the water utilities side (e.g. real time control for water networks, dynamic pump scheduling etc.), little work has been done to date on the consumer side. This paper presents a web-based platform targeting primarily the household end user. The platform enables consumers to monitor, on a real-time basis, the water demand of their household, providing feedback not only on the total water consumption and relevant costs but also on the efficiency (or otherwise) of specific indoor and outdoor uses. Targeting the reduction of consumption, the provided feedback is combined with notifications about possible leakages\bursts, and customised suggestions to improve the efficiency of existing household uses. It also enables various comparisons, with past consumption or even with that of similar households, aiming to motivate further the householder to become an active player in the water efficiency challenge. The issue of enhancing the platform’s functionality with energy timeseries is also discussed in view of recent advances in smart metering and the concept of “smart cities”. The paper presents a prototype of this web-based application and critically discusses first testing results and insights. It also presents the way in which the platform communicates with central databases, at the water utility level. It is suggested that such developments are closing the gap between technology availability and usefulness to end users and could help both the uptake of smart metering and awareness raising leading, potentially, to significant reductions of urban water consumption. The work has received funding from the European Union FP7 Programme through the iWIDGET Project, under grant agreement no318272.
Resumo:
Demands are one of the most uncertain parameters in a water distribution network model. A good calibration of the model demands leads to better solutions when using the model for any purpose. A demand pattern calibration methodology that uses a priori information has been developed for calibrating the behaviour of demand groups. Generally, the behaviours of demands in cities are mixed all over the network, contrary to smaller villages where demands are clearly sectorised in residential neighbourhoods, commercial zones and industrial sectors. Demand pattern calibration has a final use for leakage detection and isolation. Detecting a leakage in a pattern that covers nodes spread all over the network makes the isolation unfeasible. Besides, demands in the same zone may be more similar due to the common pressure of the area rather than for the type of contract. For this reason, the demand pattern calibration methodology is applied to a real network with synthetic non-geographic demands for calibrating geographic demand patterns. The results are compared with a previous work where the calibrated patterns were also non-geographic.
Resumo:
Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.