946 resultados para Waste water drainage
Resumo:
This paper studies the characteristics of intermediate pyrolysis oils derived from sewage sludge and de-inking sludge (a paper industry residue), with a view to their use as fuels in a diesel engine. The feedstocks were dried and pelletised, then pyrolysed in the Pyroformer intermediate pyrolysis system. The organic fraction of the oils was separated from the aqueous phase and characterised. This included elemental and compositional analysis, heating value, cetane index, density, viscosity, surface tension, flash point, total acid number, lubricity, copper corrosion, water, carbon residue and ash content. Most of these results are compared with commercial diesel and biodiesel. Both pyrolysis oils have high carbon and hydrogen contents and their higher heating values compare well with biodiesel. The water content of the pyrolysis oils is reasonable and the flash point is found to be high. Both pyrolysis oils have good lubricity, but show some corrosiveness. Cetane index is reduced, which may influence ignition. Also viscosity is increased, which may influence atomisation quality. Carbon residue and ash content are both high, indicating potential deposition problems. Compared with de-inking sludge pyrolysis oil (DSPO), sewage sludge pyrolysis oil (SSPO) has a higher heating value, but higher corrosiveness and viscosity. The conclusions are that both intermediate pyrolysis oils will be able to provide sufficient heat when used in diesel engine; however poor combustion and carbon deposition may be encountered. Blending of these pyrolysis oils with diesel or biodiesel could overcome these problems and is recommended for further investigation.
Resumo:
We describe a polygeneration system that can run on neat plant oils, such as Jatropha and Pongamia, or standard diesel fuel. A prototype has been constructed using a compression ignition engine of 9.9 kW shaft output. It consumes 3 L/h of fuel and will produce 40 kg/h of ice by means of an adsorption refrigerator powered from the engine jacket heat. Steaming of rice, deep and shallow frying, and other types of food preparation heated by the exhaust gas have been demonstrated. In addition, the feasibility of producing distilled water by means of multiple-effect distillation powered by the engine waste heat is shown. Overall plant efficiency and potential savings in greenhouse gas emissions are discussed. © 2012 Elsevier Ltd.
Resumo:
Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.
Resumo:
Five samples including a composite refuse derived fuel (RDF) and four combustible components of municipal solid wastes (MSW) have been reacted under supercritical water conditions in a batch reactor. The reactions have been carried out at 450 °C for 60 min reaction time, with or without 20 wt% RuO2/gamma-alumina catalyst. The reactivities of the samples depended on their compositions; with the plastic-rich samples, RDF and mixed waste plastics (MWP), giving similar product yields and compositions, while the biogenic samples including mixed waste wood (MWW) and textile waste (TXT) also gave similar reaction products. The use of the heterogeneous ruthenium-based catalyst gave carbon gasification efficiencies (CGE) of up to 99 wt%, which was up by at least 83% compared to the non-catalytic tests. In the presence of RuO2 catalyst, methane, hydrogen and carbon dioxide became the dominant gas products for all five samples. The higher heating values (HHV) of the gas products increased at least two-fold in the presence of the catalyst compared to non-catalytic tests. Results show that the ruthenium-based catalyst was active in feedstock steam reforming, methanation and possible direct hydrogenolysis of C-C bonds. This work provides new insights into the catalytic mechanisms of RuO2 during SCWG of carbonaceous materials, along with the possibility of producing high yields of methane from MSW fractions.
Resumo:
The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.
Resumo:
The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home to many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Since large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of inefficient septic systems; a comprehensive survey of selected human waste contamination markers is needed in these areas to assess water quality with respect to non-traditional micro-constituents. ^ This study reports the development and application of new sensitive and selective analytical methods for the fast screening of multiple wastewater tracers, classified as Emergent Pollutants of Concern (EPOC). Novel methods for the trace analysis of non-traditional markers of human-specific contamination such as aminopropanone were developed and used to assess the potential of non-traditional markers as wastewater tracers. ^ During our investigation, surface water samples collected from near shore environments along the South Florida were analyzed for fifteen hormones and steroids, and five commonly detected pharmaceuticals. The compounds most frequently detected were: coprostanol, cholesterol, estrone, β-estradiol, caffeine, triclosan and DEET. Concentrations of caffeine, bisphenol A and DEET were usually higher and more prevalent than the hormonal steroids. In general, it was found that common pharmaceuticals and steroids are widely present in major coastal environments in South Florida. It is also evident that aquatic bodies in heavily urbanized sectors such as the Miami River and Key Largo Harbor contain higher concentrations of several compounds while relatively open bay waters and agricultural areas show reduced chemical signatures. Concentrations of hormones in the Little Venice area of Marathon Key were above the Lowest Observable Effect Levels (LOELs) for several species, indicating that biological resources in this area are at risk. Water quality issues in some of these coastal water environments go beyond eutrophication, thus EPOC should be the target goal for future mitigation projects. ^
Resumo:
We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.
Resumo:
Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.
Resumo:
The northern Everglades Water Conservation Areas have experienced recent ecological shifts in primary producer community structure involving marl periphyton mats and dense Typha-dominated macrophyte stands. Multiple investigations have identified phosphorus (P) as a driver of primary producer community structure, but effects of water impoundment beginning in the 1950s and changes in water hardness [e.g., (CaCO3)] have also been identified as a concern. In an effort to understand pre-1950, primary producer community structure and identify community shifts since 1950, we measured pigment proxies on three sediment cores collected in Water Conservation Area-2A (WCA-2A) along a phosphorus enrichment gradient. Photosynthetic pigments, sediment total phosphorus content (TP), organic matter, total organic carbon and nitrogen were used to infer historic primary producer communities and changes in water quality and hydrology regulating those communities. Excess 210Pb was used to establish historic dates for the sediment cores. Results indicate the northern area of WCA-2A increased marl deposition and increased algal abundance ca. 1920. This increase in (presumably) calcareous periphyton before intensive agriculture and impoundment suggest canal-derived calcium inputs and to some extent early drainage effects played a role in initiating this community shift. The northern area community then shifted to Typha dominance around 1965. The areas to the south in WCA-2A experienced increased marl deposition and algal abundance around or just prior to 1950s impoundment, the precise timing limited by core age resolution. Continued increases in algal abundance were evident after 1950, coinciding with impoundment and deepening of canals draining into WCA-2A, both likely increasing water mineral and nutrient concentrations. The intermediate site developed a Typha-dominated community ca. 1995 while the southern-most core site WCA-2A has yet to develop Typha dominance. Numerous studies link sediment TP >650 mg P/kg to marsh habitat degradation into Typha-dominance. The northern and intermediate cores where Typha is currently support this previous research by showing a distinct shift in the sediment record to Typha dominance corresponding to sediment TP between 600 and 700 mg P/kg. These temporal and spatial differences are consistent with modern evidence showing water-column gradients in mineral inputs (including Ca, carbonates, and phosphorus) altering primary producer community structure in WCA-2A, but also suggest hydroperiod has an effect on the mechanisms regulating periphyton development and Typha dominance.
Resumo:
Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.
Resumo:
We examined interannual variation in soil properties from wetlands occurring in adjacent drainage basins from the southeastern Everglades. Triplicate 10-cm soil cores were collected, homogenized, and analyzed during the wet season 2006–2010 from five freshwater sawgrass wetland marshes and three estuarine mangrove forests. Soil bulk density from the Taylor Slough basin ranged from 0.15 gm-cm−3 to 0.5 gm-cm−3, was higher than from the Panhandle basin every year, and generally increased throughout the study period. Organic matter as a percent loss on ignition ranged from 7 % to 12 % from freshwater marshes and from 13 % to 56 % from estuarine mangroves. Extractable iron in soils was similar among drainage basins and wetland types, typically ranging from 0.6 to 2.0 g Fe kg−1. In contrast, inorganic sulfur was on average over four times higher from estuarine soils relative to freshwater, and was positively correlated with soil organic matter. Finally total soil phosphorus (P) was lower in freshwater soils relative to estuarine soils (84 ± 5 versus 326 ± 32 mg P kg−1). Total P from the freshwater marshes in the Panhandle basin rose throughout the study period from 54.7 ± 8.4 to 107 ± 17 mg P kg−1, a possible outcome of differences in water management between drainage basins.
Resumo:
Non-native fishes present a management challenge to maintaining Everglades National Park (ENP) in a natural state. We summarized data from long-term fish monitoring studies in ENP and reviewed the timing of introductions relative to water-management changes. Beginning in the early 1950s, management actions have added canals, altered wetland habitats by flooding and drainage, and changed inflows into ENP, particularly in the Taylor Slough/C-111 basin and Rocky Glades. The first non-native fishes likely entered ENP by the late 1960s, but species numbers increased sharply in the early 1980s when new water-management actions were implemented. After 1999, eight non-native species and three native species, all previously recorded outside of Park boundaries, were found for the first time in ENP. Several of these incursions occurred following structural and operational changes that redirected water deliveries to wetlands open to the eastern boundary canals. Once established, control non-native fishes in Everglades wetlands is difficult; therefore, preventing introductions is key to their management. Integrating actions that minimize the spread of non-native species into protected natural areas into the adaptive management process for planning, development, and operation of water-management features may help to achieve the full suite of objectives for Everglades restoration.
Resumo:
In this work the landscape morphodynamics was used to check the strength and importance of the changes carried out by man on the environment over time, in Natal-RN municipality. The occupation of partially preserved natural areas was analyzed, but environmentally fragile, such as riparian forests, vegetation on the banks of waterways, which play regulatory role of the water flow, and the dunes, which guarantee the rapid recharge of aquifers. The impacts of urban sprawl in Natal Southern and West zones Were identified and characterized, through a detailed mapping in the period between 1969 and 2013 the main Permanent Preservation Areas - PPA (banks of rivers and lagoons, and dunes remaining) and their temporal changes. For this were used aerial photographs and satellite imagery, altimetry data, and pre-existing information, which allowed the creation of a spatial database, and evolution of maps of impervious areas, evolution of the use and occupation and Digital Terrain Model (DTM) from contour lines with contour interval of 1 meter. Based on this study presents a diagnosis of the environmental situation and the state of conservation of natural areas, over the last 44 years, compared to human pressures. In general, it was found that the urban settlement has advanced about 60% of studied natural areas. This advance was growing by the year 2006, when there was a slowdown in the process, except for the Environmental Protection Zone (EPZ) 03, where the river Pitimbú and your PPA, which experienced a more significant loss area. The urban occupation affected the natural drainage and contributed to the contamination of groundwater Natal, due to increased sealed area, the release of liquid and solid waste, as well as the removal of riparian vegetation. Changed irreversibly the natural landscape, and reduced the quality and quantity of water resources necessary for the population. Thus, it is necessary to stimulate the adoption of use and protection of PPA planning measures, to the preservation of the San Valley Region inserted into the EPZ 01, and integrate more remaining dunes, in good condition, this EPZ, due to the importance of those remaining on the environment and the maintenance of quality of life. It is suggested, also, protection of catchment areas, such as PPA ponds and Pitimbú River. Finally, it is expected that this study can assist the managers in making decisions in urban and environmental planning of the municipality
Resumo:
Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.
Resumo:
Acknowledgements We are grateful to the United Kingdom Economic and Social Research Council Nexus Network for funding this work.