995 resultados para Wang, Yisong.
Resumo:
Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.
Resumo:
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Resumo:
Nitrogenated carbon nanotips (NCNTPs) have been synthesized using customized plasma-enhanced hot filament chemical vapor deposition. The morphological, structural, and photoluminescent properties of the NCNTPs are investigated using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The photoluminescence measurements show that the NCNTPs predominantly emit a green band at room temperature while strong blue emission is generated at 77 K. It is shown that these very different emission behaviors are related to the change of the optical band-gap and the concentration of the paramagnetic defects of the carbon nanotips. The studies shed light on the controversies on the photoluminescence mechanisms of carbon-based amorphous films measured at different temperatures. The relevance of the results to the use of nitrogenated carbon nanotips in light-emitting optoelectronic devices is discussed.
Resumo:
Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emissionscanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp 3carbon clusters to sp 2carbon clusters, the increase of the size of the sp 2 clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.
Resumo:
The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.
Resumo:
Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.
Resumo:
The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm2) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.
Resumo:
The Ar/O2plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4′, 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.
Resumo:
Random blinking is a major problem on the way to successful applications of semiconducting nanocrystals in optoelectronics and photonics, which until recently had neither a practical solution nor a theoretical interpretation. An experimental breakthrough has recently been made by fabricating non-blinking Cd1-xZnxSe/ZnSe graded nanocrystals [Wang et al., Nature, 2009, 459, 686]. Here, we (1) report an unequivocal and detailed theoretical investigation to understand the properties (e.g., profile) of the potential-well and the distribution of Zn content with respect to the nanocrystal radius and (2) develop a strategy to find the relationship between the photoluminescence (PL) energy peaks and the potential-well due to Zn distribution in nanocrystals. It is demonstrated that the non-square-well potential can be varied in such a way that one can indeed control the PL intensity and the energy-level difference (PL energy peaks) accurately. This implies that one can either suppress the blinking altogether, or alternatively, manipulate the PL energy peaks and intensities systematically to achieve a controlled non-random intermittent luminescence. The approach developed here is based on the ionization energy approximation and as such is generic and can be applied to any non-free-electron nanocrystals.
Resumo:
Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.
Resumo:
Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm-1 besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.
Resumo:
Here we report on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible chemical vapor deposition of ultralong carbon microcoils using acetylene precursor in the temperature range 700-750 °C. Scanning electron microscopy analysis reveals that the carbon microcoils have a unique double-helix structure and a uniform circular cross-section. It is shown that double-helix carbon microcoils have outstanding superelastic properties. The microcoils can be extended up to 10-20 times of their original coil length, and quickly recover the original state after releasing the force. A mechanical model of the carbon coils with a large spring index is developed to describe their extension and contraction. Given the initial coil parameters, this mechanical model can successfully account for the geometric nonlinearity of the spring constants for carbon micro- and nanocoils, and is found in a good agreement with the experimental data in the whole stretching process.
Resumo:
Carbon microcoils (CMCs) have been coated with a Ni nanoparticle film using an electroless plating process. The morphology, the elemental composition and the phases in the coating layer, complex permittivity and permeability of the CMCs and Ni-coated CMCs were, respectively, investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microwave vector network analysis at room temperature. A homogeneous dispersion of Ni nanoparticles on the outer surface of the CMCs was obtained, with a mean particle size of ∼34.4 nm and the phosphorus content of about 8.5 wt%. When comparing the coated and uncoated CMC samples, the real (ε′) and imaginary (ε″) part of the complex permittivity as well as dielectric dissipation factor (tgδε = ε″/ε′) of the Ni-coated CMCs were much smaller, while the real (μ′) and imaginary (μ″) part of the complex permeability and the magnetic dissipation factor (t g σμ = μ″ / μ′) were larger. The enhanced microwave absorption of Ni-coated CMCs resulted from stronger dielectric and magnetic losses. In contrast, the microwave absorption of uncoated CMCs was mainly attributed to the dielectric rather than magnetic losses.
Resumo:
Conventional catalyzed thermal CVD of carbon microcoils commonly suffers from poor control of the coil shape and morphology and rarely reaches the nanoscale size range. This article reports on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible CVD of ultra-long carbon coil-like micro- and nano-structures using acetylene precursor at relatively low process temperatures. Helical carbon microcoils with consistently uniform, circular cross-sections and a high degree of crystallinity have been synthesized at 750 °C. A further reduction of the temperature to 650 °C led to the growth of ultra-long (up to several mm) wave-like carbon nanofibers made of two nanowires with the diameters in the 100-200 nm range. The results of the XRD and Raman analysis reveal that the nanofibers feature only a slightly more disordered structure compared to the microcoils. Our results suggest that morphology and structure of the carbon coil-like micro- and nano-structures can be tailored by the appropriate alloying of the catalyst and the choice of the CVD process parameters.
Resumo:
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.