940 resultados para Voltage-sensitive Sodium Channels
Resumo:
Purpose In the past channel literature has looked to other disciplines in developing and refining their theories, models and methods in order to evolve the field. This paper traces such history and highlights the substantial changes caused by the digital age. In light of this, the inclusion of design theory into future channel management is presented to overcome existing concerns. Design/methodology/approach A comprehensive review of literature on the history of channels, the emotional experience (people), limitations of digital innovation (technology) and the role of design (business) has been conducted to create a new approach, built upon the theory of the techno-economic innovation model. Findings The findings of this study propose design-led channel management as a new research area, providing novel research questions and future research directions. The inclusion of design and emotion theories indicates that the future of digital channel design requires a deeper understanding of customers and needs to go beyond technological advances. Theoretical implications The findings provide an opportunity to explore dynamic theories and methodologies within the field of design that will broaden the horizons and challenge existing notions in channel literature. Originality/value This paper is the first paper that introduces the theory of Emotionate, as the next evolution of channel literature. The value of Emotionate lies in providing a new design-led process of integrating emotion to provide advice to practitioners as well as identifies research areas for academia, thereby extending the reach and richness of this emerging research field.
Resumo:
Over the past decade, an exciting area of research has emerged that demonstrates strong links between specific nursing care activities and patient outcomes. This body of research has resulted in the identification of a set of "nursing-sensitive outcomes"(NSOs). These NSOs may be interpreted with more meaning when they are linked to evidence-based best practice guidelines, which provide a structured means of ensuring care is consistent among all health care team members, across geographic locations, and across care settings. Uptake of evidence-based best practices at the point of care has been shown to have a measurable positive impact on processes of care and patient outcomes. The purpose of this paper is to present a systematic, narrative review of the literature regarding the clinical effectiveness of nursing management strategies on stroke patient outcomes sensitive to nursing interventions. Subsequent investigation will explore current applications of nursing-sensitive outcomes to patients with stroke, and identify and validate measurable NSOs within stroke care delivery.
Resumo:
Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.
Resumo:
Field emission (FE) electron gun sources provide new capabilities for high lateral resolution EPMA. The determination of analytical lateral resolution is not as straightforward as that for electron microscopy imaging. Results from two sets of experiments to determine the actual lateral resolution for accurate EPMA are presented for Kα X-ray lines of Si and Al and Lα of Fe at 5 and 7 keV in a silicate glass. These results are compared to theoretical predictions and Monte Carlo simulations of analytical lateral resolution. The experiments suggest little is gained in lateral resolution by dropping from 7 to 5 keV in EPMA of this silicate glass.
Resumo:
Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focus on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.
Resumo:
Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.
Resumo:
This work investigates the feasibly in using a low noise “C” Band block down-converter as a Ultra High Frequency window coupler for the detection of partial discharge activity from free conducting practices and a protrusion on the high voltage conductor in Gas Insulated Switchgear. The investigated window coupler has a better sensitivity than the internal Ultra High Frequency couplers fitted to the system. The investigated window couplers however are sensitive to changes in the frequency content of the discharge signals and appear to be less sensitive to negative discharges signals produced by a protrusion than the positive discharge signals.
Resumo:
An improved understanding of the characteristics of the pre-discharge current pulses in GIS will lead to improved analyses of the results from the UHF partial discharge detection method. This paper presents the characteristics of the first pre-discharge current pulses from a point-to-plain geometry at 1 bar absolute under both polarities of a 1.1/80 us lightning impulse. The analysis has shown that the pre-discharge current wave shape, peak current magnitude and charge is effected by the instantaneous voltage at which the pre- discharge took place as well as the polarity of the active electrode. The measured results show that protrusions on the electrodes have slower wave shape parameters than those reported for free conducting particles.
Resumo:
In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.
Resumo:
A novel and economical experimental technique has been developed to assess industrial aerosol deposition in various idealized porous channel configurations. This judicious examination on aerosol penetration in porous channels will assist engineers to better optimize designs for various engineering applications. Deposition patterns differ with porosity due to geometric configurations of the channel and superficial inlet velocities. Interestingly, it is found that two configurations of similar porosity exhibit significantly higher deposition fractions. Inertial impaction is profound at the leading edge of all obstacles, whereas particle build-up is observed at the trailing edge of the obstructions. A qualitative analysis shows that the numerical results are in good agreement with experimental results.
Resumo:
Light gauge steel frame (LSF) floor systems are generally made of lipped channel section joists and lined with gypsum plasterboards to provide adequate fire resistance rating under fire conditions. Recently a new LSF floor system made of welded hollow flange channel (HFC) section was developed and its fire performance was investigated using full scale fire tests. The new floor systems gave higher fire resistance ratings in comparison to conventional LSF floor systems. To avoid expensive and time consuming full scale fire tests, finite element analyses were also performed to simulate the fire performance of LSF floors made of HFC joists using both steady and transient state methods. This paper presents the details of the developed finite element models of HFC joists to simulate the structural fire performance of the LSF floor systems under standard fire conditions. Finite element analyses were performed using the measured time–temperature profiles of the failed joists from the fire tests, and their failure times, temperatures and modes, and deflection versus time curves were obtained. The developed finite element models successfully predicted the structural performance of LSF floors made of HFC joists under fire conditions. They were able to simulate the complex behaviour of thin cold-formed steel joists subjected to non-uniform temperature distributions, and local buckling and yielding effects. This study also confirmed the superior fire performance of the newly developed LSF floors made of HFC joists.
Resumo:
Background Genetic testing is recommended when the probability of a disease-associated germline mutation exceeds 10%. Germline mutations are found in approximately 25% of individuals with phaeochromcytoma (PCC) or paraganglioma (PGL); however, genetic heterogeneity for PCC/PGL means many genes may require sequencing. A phenotype-directed iterative approach may limit costs but may also delay diagnosis, and will not detect mutations in genes not previously associated with PCC/PGL. Objective To assess whether whole exome sequencing (WES) was efficient and sensitive for mutation detection in PCC/PGL. Methods Whole exome sequencing was performed on blinded samples from eleven individuals with PCC/PGL and known mutations. Illumina TruSeq™ (Illumina Inc, San Diego, CA, USA) was used for exome capture of seven samples, and NimbleGen SeqCap EZ v3.0 (Roche NimbleGen Inc, Basel, Switzerland) for five samples (one sample was repeated). Massive parallel sequencing was performed on multiplexed samples. Sequencing data were called using Genome Analysis Toolkit and annotated using annovar. Data were assessed for coding variants in RET, NF1, VHL, SDHD, SDHB, SDHC, SDHA, SDHAF2, KIF1B, TMEM127, EGLN1 and MAX. Target capture of five exome capture platforms was compared. Results Six of seven mutations were detected using Illumina TruSeq™ exome capture. All five mutations were detected using NimbleGen SeqCap EZ v3.0 platform, including the mutation missed using Illumina TruSeq™ capture. Target capture for exons in known PCC/PGL genes differs substantially between platforms. Exome sequencing was inexpensive (<$A800 per sample for reagents) and rapid (results <5 weeks from sample reception). Conclusion Whole exome sequencing is sensitive, rapid and efficient for detection of PCC/PGL germline mutations. However, capture platform selection is critical to maximize sensitivity.
Resumo:
The structures of two hydrated salts of 4-aminophenylarsonic acid (p-arsanilic acid), namely ammonium 4-aminophenylarsonate monohydrate, NH4(+)·C6H7AsNO3(-)·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter-species N-H...O and arsonate and water O-H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding interactions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na(+) cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O-H...O and N-H...O hydrogen-bonding interactions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.
Resumo:
A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.
Resumo:
Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.