908 resultados para Viscoelastic materials with memory
Análise granulométrica do compósito cimentício produzido com adição de resíduos de madeira e escória
Resumo:
Since the early twenty-first century, the construction sector has been the second largest on the rise in the Brazilian industrial sector, with a growth of 1.4% in 2012, and is likely to remain at this level for a long time. However, unlike decades ago, the industry has been seeking in its manufacturing process, sustainable materials, encompassing in their works the concept of sustainability. Thus, the timber sector seeks to satisfy a market increasingly demanding, innovating techniques and utilization being less aggressive to the environment. The purpose of this study was to produce and evaluate the mechanical strength of the composite cement with the addition of wood residues and slag low oven. Therefore, it was made 42 specimen cement-slag-wood, carried out in two steps. Since at the first, it was varied only the slag particle size, and at the second, through the best result of the previous step, it was varied the wood particles granulometry. The mechanical performance of the composite was evaluated by the results obtained in the compression test and the physical test for determining the density of the material. In the first step of the process can be concluded that the best result was achieved with the use of slag particles retained on the 60 mesh sieve. In the second phase of the study concluded that the best results were achieved with wood particles with the large particles, i.e. particles retained on the 10 mesh sieve. Both in the first and in the second step it can be seen that there has been the influence of the particle size of the waste materials. With the obtained results, could be evaluated that the use of waste for the production of cement-slag-wood composite showed lower performance when compared to the results obtained in studies without the use of waste. However, some applications are feasible to be performed with the use of composite wood-cement-slag
Resumo:
The increasing technological innovation and demand for materials with better properties boosts research into new materials and new alloys. To do so, aluminum alloys are being developed, among them the AA7075-T6, having many applications in aerospace and military industries, machinery and equipment, molds for plastic injection and structures. To study and understand the properties, characteristics and especially the microstructure of the material, the metallographic preparation is essential. This paper presents new methodologies to achieve the metallography of samples of scrap alloy AA7075-T6, with emphasis on methods of polishing. For the five samples, the best results were those with specific grinding, the samples only going down on the sander. For polishing, the most effective method so far has been using the polishing cloth 16.3, of ATM enterprise, solution of diamond 3 μm, solution of diamond 1 μm, and colloidal solution of OP-S. For the etching, the reactive agent used was phosphoric acid (H3PO4) 85% P.A., as 90% in the proportion of distilled water to 10% acid. The best results were obtained in the attacks of 300 and 240 seconds, revealing the grain boundaries in most areas. Methodologies need more studies and more tests, but the results have proved to be satisfactory
Resumo:
With the emergence of new filling materials with different properties and behaviors, the approach of endodontic treatment must be readjusted so that the appropriate result can be achieved. New endodontic sealers include methacrylate resin-based, plant resin-based and the evolution of epoxy-based sealers. This study verified the behavior of new materials that presents controversial results in the literature, about coronal bacterial leakage. That for, 56 single-rooted human teeth were prepared in the direction crown-apex and filled with gutta-percha points with taper of 4% using the single cone technique. Roots were divided randomly into 4 groups according to the sealer (Apexit Plus, AH Plus, EndoREZ and Polifil). After filling, the roots were incorporated in a leakage model, which upper chamber contained a suspension of Streptococcus mutans, and lower chamber a broth, leaving 3 mm of root apical portion immersed. Leakage was assessed for turbidity in lower chamber every day for 60 days. Survival analysis was performed using the nonparametric Kaplan- Meier method (p<0,05). All experimental groups presented leakage during the study’s period, however the maximum time achieve was 22 days. The medium time of leakage was: Apexit Plus 6,3 days, AH Plus 6,3 days and Polifil 5,1 days, but in EndoREZ all specimens infiltrated in the first day, presenting shorter capacity of impermeabilization compared to the other groups. Concluding that none of the sealers tested was able to prevent coronal bacterial leakage
Resumo:
Mass reduction coupled with the mechanical performance in service has been the goal of many projects related to the transport area, considering the advantages that mass reduction can bring. However, make a simple material substitution without design a new geometry to corroborate for the best component performance, often makes the replacement unviable. In this study, it was investigated the advantages of replacing the prototype BAJA SAE front suspension lower arm of Equipe Piratas do Vale de BAJA SAE - Universidade Paulista, Campus Guaratinguetá, actually produced with steel, for a new component made of carbon fiber composite. The new geometry has been developed to provide the best possible performance for this component and your easy manufacturing. The study was done using the 3D modeling tools and computer simulations via finite element method. The first stage of this work consisted on calculation of the estimated maximum contact force tire / soil in a prototype landing after jump at one meter high, drop test in the laboratory with the current vehicle, current front suspension lower arm 3D modeling, finite element simulation and analysis of critical regions. After all current component analysis, a new geometry for the part in study was designed and simulated in order to reduce the component mass and provide a technological innovation using composite materials. With this work it was possible to obtain a theoretical component mass reduction of 25,15% maintaining the mechanical strength necessary for the appropriated component performance when incited
Resumo:
This work aims to synthesize the manganese and zinc ferrite, by the polymeric precursor method, in order to obtain materials with appropriate characteristics for the application in medical diagnosis techniques. The manganese and zinc ferrite powders with the composition of Mn(1-x)ZnxFe2O4, where x=0,23, were prepared and calcined in air at different times and temperatures. The X-ray diffraction (XRD) data show that the sample calcined at 400°C crystallize as ferrite (monophase), but in an inverted spinel structure (high content of iron occupying manganese tetrahedral site and manganese occupying the iron octahedral site). The samples calcined at temperatures between 600°C and 900°C shows the secondary phase of hematite and the sample calcined at 1100oC shows to be monophase in ferrite with normal spinel structure. The monophase powders of ferrite showed a reduction in the surface area and an increasing in the pore size for higher calcination temperatures. The magnetic analysis show that the sample calcined at 400°C presents satisfactory magnetization at room temperature, however, it behaves as diamagnetic material at low temperatures (10K). The powder containing hematite, without the partial substitution of iron ions by manganese, showed to have low transition temperature, and consequently low magnetization at room temperature. The hematite, when partially substituted, provides materials with irregular magnetization at the saturation region. The powder calcined at 1100°C shows high magnetization either at room temperature or low temperature (10K)
Resumo:
The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change
Resumo:
The means of mass communication are powerful tools to the spread of a concept as persuasion is a strong characteristic of discourses that gather around the sphere of communication, especially in advertising discourses. By the end of the 90’s, the advertisement “Down: the worst syndrome is prejudice”, did great success approaching prejudice / pre-concept in a subtle and innovative way, due its outstanding purpose and style inserting two boys in a carousel, one is a street child, the other a Down syndrome patient. The advertisement reveals a speak project of diffusion and spread of ideas that down syndrome patients are capable of dealing and supporting a routine full of activities, making a opposition to the campaigns and ideas that, in spite of raising the respect towards these kids, only contributed with the attenuation of their handicaps. Our objective is to investigate the presence of these social values in the quoted audio-visual material, and for that we’ve searched the contextualization of the advertisement in its own time period. The theory and methodological aspects got their base in Bakhtinian studies and concepts; we used the concepts of discourse gender, chronotope and mainly dialogism and enunciation. We analyzed the style utilized in the advertisement, the dialogue between the politically correct and the prejudice speeches, the verbal discourse of the music that flows with the progress of the enunciation, the non-verbal discourse of the photography (nostalgic, producing effects of sense in its relation with memory), the chronotope present in the utilization of the carousel and its significations. We concluded that the accession of the recipient, in it responsive comprehension of the enunciation at hand, is an effect produced by the well-succeded addition of these different types of discourses
Resumo:
In the recent years, the use of proton beams in radiotherapy has been an outstanding progress (SMITH, 2006). Up to now, computed tomography (CT) is a prerequisite for treatment planning in this kind of therapy because it provides the electron density distribution required for calculation of dose and the interval of doses. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate (SADROZINSKI, 2004). Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution (SCHULTE, et al, 2004). One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, was used in both the program SRIM (The Stopping and Range of Ions in Matter) to perform simulations of the interaction of proton beams with pencil beam type. In the first step we used the energies in the range of 100-250 MeV (ZIEGLER, 1999). The targets were set to 50 mm in length for the beam of 100 MeV, due to its interaction with the target, and short-range, and 70 mm for 150, 200 and 250 MeV The target was composed of liquid water and a layer of 6 mm cortical bone (ICRP). It were made 9 simulations varying the position of the heterogeneity of 5 mm. In the second step the energy of 250 MeV was taken out from the simulations, due to its greater energy and less interaction. The targets were diminished to 50 mm thick to standardize the simulations. The layer of bone was divided into two equal parts and both were put in the ends of the target... (Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Turmeric (Curcuma longa L.), which has been used for long time as a spice, food preservative and coloring agent, is a rich source of beneficial phenolic compounds identified as curcuminoids. These phenolic compounds are known for their antioxidant, anti-inflammatory and antimutagenic properties, among others. On the other hand, they are very susceptible to oxidation, requiring protection against oxygen, light and heat. This protection can be achieved by microencapsulation. In this work, the characteristics and the stability of turmeric oleoresin encapsulated by freeze-drying using mixtures of maltodextrin and gelatin as wall materials were studied. Encapsulated turmeric oleoresin was stored at –20, 25 and 60 °C, in the absence of light, and analyzed over a period of 35 days for curcumin and total phenolic contents and color. Results showed that the samples produced with 26% maltodextrin/0.6% gelatin and 22% maltodextrin/3% gelatin presented good encapsulation efficiencies and solubility. In general, the method of encapsulation employed originated products with satisfactory thermal stability, although the encapsulated materials with a higher proportion of maltodextrin in relation to gelatin had better stabilities, especially at –20 and 25 °C temperatures.
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
The industry generally has sought materials with high mechanical resistance, low density, thermal stability and corrosion resistance. In the aerospace industry, for example, the use of aluminum alloys, such as Al 2024-T351 and Al 7075-T7351, have become essential. However, the use of these materials often do not resulted in a satisfactory performance of the component, since the presence of cracks can cause total rupture of the component, even with a tension below the yield stress of the material, unexpectedly. In this work, these aluminum alloys were analyzed and samples were modeled by the finite element method. Moreover, in the models were applied two different types of cracks, central and edge crack, a vertical force was applied to result in a tension 70% of the yield stress of the material analyzed. Through stress asymptotic distribution in the region near the crack tip were calculated the values of the stress intensity factors for each crack length, after the stress intensity factors characterized were compared graphically with the values of fracture toughness found in the available literature