945 resultados para Variations (Orchestra), Arranged
Resumo:
The total sea level variation (SLV) is the combination of steric and mass␣induced SLV, whose exact shares are key to understanding the oceanic response to climate system changes. Total SLV can be observed by radar altimetry satellites such as TOPEX/POSEIDON and Jason 1/2. The steric SLV can be computed through temperature and salinity profiles from in situ measurements or from ocean general circulation models (OGCM), which can assimilate the said observations. The mass-induced SLV can be estimated from its time-variable gravity (TVG) signals. We revisit this problem in the Mediterranean Sea estimating the observed, steric, and mass-induced SLV, for the latter we analyze the latest TVG data set from the GRACE (Gravity Recovery and Climate Experiment) satellite mission launched in 2002, which is 3.5 times longer than in previous studies, with the application of a two-stage anisotropic filter to reduce the noise in high-degree and -order spherical harmonic coefficients. We confirm that the intra-annual total SLV are only produced by water mass changes, a fact explained in the literature as a result of the wind field around the Gibraltar Strait. The steric SLV estimated from the residual of “altimetry minus GRACE” agrees in phase with that estimated from OGCMs and in situ measurements, although showing a higher amplitude. The net water fluxes through both the straits of Gibraltar and Sicily have also been estimated accordingly.
Resumo:
The sea level variation (SLVtotal) is the sum of two major contributions: steric and mass-induced. The steric SLVsteric is that resulting from the thermal and salinity changes in a given water column. It only involves volume change, hence has no gravitational effect. The mass-induced SLVmass, on the other hand, arises from adding or subtracting water mass to or from the water column and has direct gravitational signature. We examine the closure of the seasonal SLV budget and estimate the relative importance of the two contributions in the Mediterranean Sea as a function of time. We use ocean altimetry data (from TOPEX/Poseidon, Jason 1, ERS, and ENVISAT missions) to estimate SLVtotal, temperature, and salinity data (from the Estimating the Circulation and Climate of the Ocean ocean model) to estimate SLVsteric, and time variable gravity data (from Gravity Recovery and Climate Experiment (GRACE) Project, April 2002 to July 2004) to estimate SLVmass. We find that the annual cycle of SLVtotal in the Mediterranean is mainly driven by SLVsteric but moderately offset by SLVmass. The agreement between the seasonal SLVmass estimations from SLVtotal – SLVsteric and from GRACE is quite remarkable; the annual cycle reaches the maximum value in mid-February, almost half a cycle later than SLVtotal or SLVsteric, which peak by mid-October and mid-September, respectively. Thus, when sea level is rising (falling), the Mediterranean Sea is actually losing (gaining) mass. Furthermore, as SLVmass is balanced by vertical (precipitation minus evaporation, P–E) and horizontal (exchange of water with the Atlantic, Black Sea, and river runoff) mass fluxes, we compared it with the P–E determined from meteorological data to estimate the annual cycle of the horizontal flux.
Resumo:
Reply to comment by L. Fenoglio-Marc et al. on “On the steric and mass-induced contributions to the annual sea level variations in the Mediterranean Sea”.
Resumo:
In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/ Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed.
Resumo:
This work focuses on a Messinian shallow-marine terrigenous unit, termed the La Virgen Formation, which forms part of the sedimentary infill of the Bajo Segura Basin (Betic margin of the western Mediterranean). This formation was deposited during a high sea level phase prior to the onset of the Messinian Salinity Crisis. Stratigraphically, it comprises a prograding stack of sandstone lithosomes alternating with marly intervals (1st-order cyclicity). These lithosomes are characterized by a homoclinal geometry that tapers distally, and interfinger with pelagic sediments rich in planktonic and benthic microfauna (Torremendo Formation). An analysis of sedimentary facies of each lithosome reveals a repetitive succession of sandy storm beds (tempestites), occasionally amalgamated, which are separated by thin marly layers (2nd-order cyclicity). Each storm bed contains internal erosional surfaces (3rd-order cyclicity) that delimit sets of laminae. Two categories of storm beds have been differentiated. The first one includes layers formed below storm wave base (SWB), characterized by traction structures associated to unidirectional flows (scoured base, planar lamination, and parting lineation). The second category consists of layers deposited above the SWB which display typical high regime oscillatory flow structures (swaley and hummocky cross lamination). In both cases, the ichnological record is characterized by an oligotypic association of Ophiomorpha nodosa, which can be interpreted as the result of allochthonous tracemakers (crustaceans) transported during storm events together with the sediment. The benthic microfauna in the marly intervals that separate the sandstone lithosomes (1st-order cyclicity) indicates that the storm ebb surges were deposited at depths ranging from those of inner shelf settings (with Elphidium spp. and Cibicides lobatulus) to those of outer shelf (with Valvulineria complanata and Uvigerina cylindrica). At the distal end of the sandstone lithosomes, the planktonic microfauna is characterized by a high content of taxa indicative of warm-oligotrophic waters (Globigerinoides obliquus and Globigerinoides bulloideus). In contrast, in the marly intervals, the microfauna is dominated by species typical of cold-eutrophic waters (Globigerina and Neogloboquadrina). This alternation of planktic foraminiferal assemblages is interpreted as being the expression of climatic cycles, in which every episode of progradation of tempestite-dominated lithosomes corresponds to maximum insolation and warm waters, whereas episodes of marly deposition correspond to minimal insolation and cold waters. The 1st-order cyclicity recorded in the La Virgen Formation, in a context of terrigenous storm-dominated shelf, corresponds to sapropel/homogeneous marl cycles formed in a pelagic basin (Torremendo Fm). These cycles in pelagic sediments are commonplace throughout the Mediterranean during the Messinian and reflect precession orbital changes: repeated periods of maximum insolation – minimum precession (sapropels) and minimal insolation – maximum precession (homogeneous marls). The fact that the example of terrigenous unit studied herein is coetaneous with the well-developed reef complexes in the Mediterranean basins points out the importance of sediment supply in the formation of large-scale sandy lithosomes. This is a crucial aspect to understanding reservoir genesis as well as lateral stratigraphic relationships with potential seal and/or source rocks.
Resumo:
La comparaison des résultats de l’analyse dendrochronologique et dendroclimatologique du Pin d’Alep de la forêt domaniale de Tlemcen a été réalisée en conditions stationnelles particulières. L’analyse de la croissance des cernes annuels et des rapports des écarts relatifs des cernes successifs montrent une nette tendance régressive chez les arbres jeunes. La sensibilité moyenne (SM) et les coefficients d’inter datation (SR) respectifs aux jeunes arbres et aux plus âgés confirment la dépendance assez forte des premiers aux facteurs climatiques particulièrement à la pluviométrie. Les résultats de ce travail ont permis d’établir une relation pluviométrie / accroissement radial en fonction de l’âge de leur formation. Ainsi, il est établi qu’à partir de ces résultats particulièrement ceux des valeurs des sensibilités moyennes (SM) que les conséquences probables des variations climatiques influentes sensiblement sur les jeunes sujets. Aussi pour éviter les changements d’ordre physio biologiques liés au vieillissement des arbres, il est préférable de comparer les cernes sur une période de 40 à 50 ans comme c’est le cas des six échantillons choisis dans la zone d’étude.
Resumo:
Diurnal changes in corneal geometry, pachymetry, and intraocular pressure (IOP) in a healthy eye were recorded. The deformation response to an air puff was simulated using 3 levels of corneal stiffness. The response was dependent on IOP and pachymetry and not only on the biomechanical properties of the cornea. Similarly, the maximum variability due to the diurnal changes in pachymetry and IOP in the corneal displacement generated by the air puff was found to reach 5%. Therefore, diurnal changes in IOP and corneal thickness were able to induce some variability in the air puff–based corneal deformation response. This potential variability should be considered when the biomechanical properties of the cornea are analyzed with air-puff devices.
Resumo:
Fish traps are widely used in Norwegian fjords, especially those designed for monitoring salmonid populations in the marine environment, although many other marine fish species are also captured. The composition and spatio-temporal variations of fish species captured by fish traps were monitored in five different coastal locations throughout the Romsdalsfjord region, Western Norway, from May to August during the three consecutive years (2011–2013). Twenty-three fish species were captured by traps in coastal waters, both resident and migratory fishes. The most common fish and with greater catchability were saithe (Pollachis virens) and sea trout (Salmo trutta), followed by cod (Gadus morhua), pollack (P. pollachius), herring (Clupea harengus) and mackerels (Trachurus trachurus and Scomber scombrus). However, the captured assemblage presented great spatial and seasonal variations, in terms of mean daily catch, probably associated with hydrographical conditions and migrational patterns. Information obtained in this study will help us to better understand the compositions and dynamic of coastal fish populations inhabiting Norwegian coastal waters. In addition, traps are highly recommended as a management tool for fish research (e.g. fish-tagging experiments, mark and recapture) and conservation purposes (coastal use and fisheries studies).
Resumo:
1
Resumo:
v.2 (1841-1843)
Resumo:
Travail dirigé présenté en vue de l’obtention du grade de maîtrise en criminologie option sécurité intérieure