949 resultados para Variations (Harpsichord)
Resumo:
A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e. the UK'37 index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C28 and C30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20 kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST, or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of ca. 7 °C for UK'37 and 9 °C for LDI. Minimum SSTs (10-12 °C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST towards the beginning of the Bölling period (20 °C), while UK'37-SST remains constantly low (~12 °C). The Bölling-Alleröd is characterized by a rapid increase and subsequent decrease in UK'37-SST, while the LDI-SST decrease continuously. Short-term fluctuations in UK'37-SST are probably related to availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower UK'37-derived temperature values in the eastern Alboran (by ca. 1.5-2 °C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.
Resumo:
Basic chemical composition of interstitial water in sediments of the Northwestern Pacific along a profile from the continental shelf of the Japan Trench to the ocean bed is discussed. Transformation of interstitial water in sediments rich in organic matter on the continental shelf and at the bottom of the Japan Trench is indicated. Variation in the vertical direction of elementary constituents of interstitial salt solution and variations in certain biogenic elements permit to make conclusions concerning processes taking place in sediments during sedimentation and diagenesis. These processes cause both metamorphism of water and transformation of organic and mineral content of sediments.
Resumo:
Genetic diversity of baltic F. vesiculosus is low compared to other populations which might jeopardize their potential for adaptation to climate change. Especially the early life-stage F. vesiculosus may be threaten by ocean warming and acidification. To test this, we exposed F. vesiculosus germlings to warming and acidification in the near-natural scenario in the "Kiel Outdoor Benthocosms" maintaining the natural variation of the Kiel Fjord, Germany (54°27 'N, 10°11 'W) in all seasons (spring 2013 - 2014). Warming was simulated by using a delta treatment adding 5 °C and by increasing pCO2 at 1000 µatm. Warming positively affected germlings' growth in spring and in summer but decreased non-photochemical quenching in spring and survival in summer. Acidified conditions showed much weaker effects than warming. The high genotypic variation in stress sensitivity as well as the enhanced survival at high diversity levels indicate higher potential for adaptation for genetically diverse populations. We conclude that the combination of stressors and season determines the sensitivity to environmental stress and that genetic variation is crucial for the adaptation to climate change stress.
Resumo:
Here we report 420 kyr long records of sediment geochemical and color variations from the southwestern Iberian Margin. We synchronized the Iberian Margin sediment record to Antarctic ice cores and speleothem records on millennial time scales and investigated the phase responses relative to orbital forcing of multiple proxy records available from these cores. Iberian Margin sediments contain strong precession power. Sediment "redness" (a* and 570-560 nm) and the ratio of long-chain alcohols to n-alkanes (C26OH/(C26OH + C29)) are highly coherent and in-phase with precession. Redder layers and more oxidizing conditions (low alcohol ratio) occur near precession minima (summer insolation maxima). We suggest these proxies respond rapidly to low-latitude insolation forcing by wind-driven processes (e.g., dust transport, upwelling, precipitation). Most Iberian Margin sediment parameters lag obliquity maxima by 7-8 ka, indicating a consistent linear response to insolation forcing at obliquity frequencies driven mainly by high-latitude processes. Although the lengths of the time series are short (420 ka) for detecting 100 kyr eccentricity cycles, the phase relationships support those obtained by Shackleton []. Antarctic temperature and the Iberian Margin alcohol ratios (C26OH/(C26OH + C29)) lead eccentricity maxima by 6 kyr, with lower ratios (increased oxygenation) occurring at eccentricity maxima. CO2, CH4, and Iberian SST are nearly in phase with eccentricity, and minimum ice volume (as inferred from Pacific d18Oseawater) lags eccentricity maxima by 10 kyr. The phase relationships derived in this study continue to support a potential role of the Earth's carbon cycle in contributing to the 100 kyr cycle.