942 resultados para VENOUS VARIATIONS
Resumo:
OBJECTIVES A variety of studies have suggested that flavonoids are effective for the treatment of CVD. However, many questions remain about their mechanism of action and when, how, and for what signs and symptoms they should be used. METHOD A panel of experts in CVD met in Budapest, Hungary in December 2011 to discuss the current state of knowledge of CVD and the role of flavonoids in its treatment. The discussion was based on a literature search in the current databases. The goals of this paper are recommendations for further studies on the use of flavonoids in the treatment of CVD. RESULTS There is good evidence to recommend the use of flavonoids in the treatment of CVD. However, because of the poor quality of some older clinical trials, inadequate reporting, and insufficient information, much work is still needed to firmly establish their clinical efficacy and to determine when and how they should be employed. In particular, long-term randomized, placebo-controlled, double-blind studies are needed to establish the efficacy and safety of flavonoids. Additional studies are also needed to establish their mechanism of action, pharmacokinetics, toxicity, and cost-effectiveness. CONCLUSIONS Aside from good evidence for the use of flavonoids in CVD further studies are indicated to establish long term treatment in this indication.
Resumo:
The occurrence and temporal variation of 18 perfluoroalkyl substances (PFASs) and 8 polybrominated diphenyl ethers (PBDEs) in the European Alps was investigated in a 10 m shallow firn core from Colle Gnifetti in the Monte Rosa Massif (4455 m above sea level). The firn core encompasses the years 1997-2007. Firn core sections were analyzed by liquid chromatography-tandem mass spectrometry (PFASs) and gas chromatography-mass spectrometry (PBDEs). We detected 12 PFASs and 8 PBDEs in the firn samples. Perfluorobutanoic acid (PFBA; 0.3-1.8 ng L(-1)) and perfluorooctanoic acid (PFOA; 0.2-0.6 ng L(-1)) were the major PFASs while BDE 99 (
Resumo:
Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m m−1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m m−1 and widths ≥30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre – River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past.
Resumo:
Chondrites are among the most primitive objects in the Solar System and constitute the main building blocks of telluric planets. Among the radiochronometers currently used for dating geological events, Sm–Nd and Lu–Hf are both composed of refractory, lithophile element. They are thought to behave similarly as the parent elements (Sm and Lu) are generally less incompatible than the daughter elements (Nd and Hf) during geological processes. As such, their respective average isotopic compositions for the solar system should be well defined by the average of chondrites, called Chondritic Uniform Reservoir (CHUR). However, while the Sm–Nd isotopic system shows an actual spread of less than 4% in the average chondritic record, the Lu–Hf system shows a larger variation range of 28% [Bouvier A., Vervoort J. D. and Patchett P. J. (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett.273, 48–57]. To better understand the contrast between Sm–Nd and Lu–Hf systems, the REE and Hf distribution among mineral phases during metamorphism of Karoonda (CK) and Vigarano-type (CV) carbonaceous chondrites has been examined. Mineral modes were determined from elemental mapping on a set of five CK chondrites (from types 3–6) and one CV3 chondrite. Trace-element patterns are obtained for the first time in all the chondrite-forming minerals of a given class (CK chondrites) as well as one CV3 sample. This study reveals that REE are distributed among both phosphates and silicates. Only 30–50% of Sm and Nd are stored in phosphates (at least in chondrites types 3–5); as such, they are not mobilized during early stages of metamorphism. The remaining fraction of Sm and Nd is distributed among the same mineral phases; these elements are therefore not decoupled during metamorphism. Of the whole-rock total of Lu, the fraction held in phosphate decreases significantly as the degree of metamorphism increases (30% for types 3 and 4, less than 5% in type 6). In contrast to Lu, Hf is mainly hosted by silicates with little contribution from phosphates throughout the CK metamorphic sequence. A significant part of Sm and Nd are stored in phosphates in types 3–5, and these elements behave similarly during CK chondrite metamorphism. That explains the robustness of the Sm/Nd ratios in chondrites through metamorphism, and the slight discrepancies observed in the present-day isotopic Nd values in chondrites. On the contrary, Lu and Hf are borne by several different minerals and consequently they are redistributed during metamorphism–induced recrystallization. The Lu/Hf ratios are therefore significantly disturbed during chondrites metamorphism, leading to the high discrepancies observed in present-day Hf isotopic values in chondrites.
Resumo:
Current nutrient deposition shows episodic variations which likely may impact the local nutrient cycle at the RBSF. Comparing analyses of deposition data during present-day atmospheric circulation and phases of high biomass burning in the Amazon, characteristic relationships between remote emissions and local deposition are determined. By using projections drawn from the special report on emission scenarios (SRES) in combination with a trajectory modeling tool, future nutrient deposition conditions of the mountain ecosystem are assessed. Observations of relations between climatic variables, current time series of nutrient deposition, and tree growth point to an impact of the remote fertilization effect of atmospheric matters, emitted primarily by human activities like biomass burning and agricultural and industrial sources. The increasing emissions in the future may have adverse effects on the ecosystem in the long run.
Resumo:
Detailed insight into natural variations of the greenhouse gas nitrous oxide (N2O) in response to changes in the Earth's climate system is provided by new measurements along the ice core of the North Greenland Ice Core Project (NGRIP). The presented record reaches from the early Holocene back into the previous interglacial with a mean time resolution of about 75 years. Between 11 and 120 kyr BP, atmospheric N2O concentrations react substantially to the last glacial-interglacial transition (Termination 1) and millennial time scale climate variations of the last glacial period. For long-lasting Dansgaard/Oeschger (DO) events, the N2O increase precedes Greenland temperature change by several hundred years with an increase rate of about 0.8-1.3 ppbv/century, which accelerates to about 3.8-10.7 ppbv/century at the time of the rapid warming in Greenland. Within each bundle of DO events, the new record further reveals particularly low N2O concentrations at the approximate time of Heinrich events. This suggests that the response of marine and/or terrestrial N2O emissions on a global scale are different for stadials with and without Heinrich events.
Resumo:
During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. Here we assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition delta C-13 of methane in Antarctic ice cores from Dronning Maud Land and Vostok. We find that variations in the delta C-13 of methane are not generally correlated with changes in atmospheric methane concentration, but instead more closely correlated to atmospheric CO2 concentrations. We interpret this to reflect a climatic and CO2-related control on the isotopic signature of methane source material, such as ecosystem shifts in the seasonally inundated tropical wetlands that produce methane. In contrast, relatively stable delta C-13 values occurred during intervals of large changes in the atmospheric loading of methane. We suggest that most methane sources-most notably tropical wetlands-must have responded simultaneously to climate changes across these periods.
Resumo:
The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.
Resumo:
Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.
Resumo:
BACKGROUND Although well-established for suspected lower limb deep venous thrombosis, an algorithm combining a clinical decision score, d-dimer testing, and ultrasonography has not been evaluated for suspected upper extremity deep venous thrombosis (UEDVT). OBJECTIVE To assess the safety and feasibility of a new diagnostic algorithm in patients with clinically suspected UEDVT. DESIGN Diagnostic management study. (ClinicalTrials.gov: NCT01324037) SETTING: 16 hospitals in Europe and the United States. PATIENTS 406 inpatients and outpatients with suspected UEDVT. MEASUREMENTS The algorithm consisted of the sequential application of a clinical decision score, d-dimer testing, and ultrasonography. Patients were first categorized as likely or unlikely to have UEDVT; in those with an unlikely score and normal d-dimer levels, UEDVT was excluded. All other patients had (repeated) compression ultrasonography. The primary outcome was the 3-month incidence of symptomatic UEDVT and pulmonary embolism in patients with a normal diagnostic work-up. RESULTS The algorithm was feasible and completed in 390 of the 406 patients (96%). In 87 patients (21%), an unlikely score combined with normal d-dimer levels excluded UEDVT. Superficial venous thrombosis and UEDVT were diagnosed in 54 (13%) and 103 (25%) patients, respectively. All 249 patients with a normal diagnostic work-up, including those with protocol violations (n = 16), were followed for 3 months. One patient developed UEDVT during follow-up, for an overall failure rate of 0.4% (95% CI, 0.0% to 2.2%). LIMITATIONS This study was not powered to show the safety of the substrategies. d-Dimer testing was done locally. CONCLUSION The combination of a clinical decision score, d-dimer testing, and ultrasonography can safely and effectively exclude UEDVT. If confirmed by other studies, this algorithm has potential as a standard approach to suspected UEDVT. PRIMARY FUNDING SOURCE None.
Resumo:
There is a need to validate risk assessment tools for hospitalised medical patients at risk of venous thromboembolism (VTE). We investigated whether a predefined cut-off of the Geneva Risk Score, as compared to the Padua Prediction Score, accurately distinguishes low-risk from high-risk patients regardless of the use of thromboprophylaxis. In the multicentre, prospective Explicit ASsessment of Thromboembolic RIsk and Prophylaxis for Medical PATients in SwitzErland (ESTIMATE) cohort study, 1,478 hospitalised medical patients were enrolled of whom 637 (43%) did not receive thromboprophylaxis. The primary endpoint was symptomatic VTE or VTE-related death at 90 days. The study is registered at ClinicalTrials.gov, number NCT01277536. According to the Geneva Risk Score, the cumulative rate of the primary endpoint was 3.2% (95% confidence interval [CI] 2.2-4.6%) in 962 high-risk vs 0.6% (95% CI 0.2-1.9%) in 516 low-risk patients (p=0.002); among patients without prophylaxis, this rate was 3.5% vs 0.8% (p=0.029), respectively. In comparison, the Padua Prediction Score yielded a cumulative rate of the primary endpoint of 3.5% (95% CI 2.3-5.3%) in 714 high-risk vs 1.1% (95% CI 0.6-2.3%) in 764 low-risk patients (p=0.002); among patients without prophylaxis, this rate was 3.2% vs 1.5% (p=0.130), respectively. Negative likelihood ratio was 0.28 (95% CI 0.10-0.83) for the Geneva Risk Score and 0.51 (95% CI 0.28-0.93) for the Padua Prediction Score. In conclusion, among hospitalised medical patients, the Geneva Risk Score predicted VTE and VTE-related mortality and compared favourably with the Padua Prediction Score, particularly for its accuracy to identify low-risk patients who do not require thromboprophylaxis.