882 resultados para VEGETATION CLASSIFICATION SYSTEM
Resumo:
Las aplicaciones de la teledetección al seguimiento de lo que ocurre en la superficie terrestre se han ido multiplicando y afinando con el lanzamiento de nuevos sensores por parte de las diferentes agencias espaciales. La necesidad de tener información actualizada cada poco tiempo y espacialmente homogénea, ha provocado el desarrollo de nuevos programas como el Earth Observing System (EOS) de la National Aeronautics and Space Administration (NASA). Uno de los sensores que incorpora el buque insignia de ese programa, el satélite TERRA, es el Multi-angle Imaging SpectroRadiometer (MISR), diseñado para capturar información multiangular de la superficie terrestre. Ya desde los años 1970, se conocía que la reflectancia de las diversas ocupaciones y usos del suelo variaba en función del ángulo de observación y de iluminación, es decir, que eran anisotrópicas. Tal variación estaba además relacionada con la estructura tridimensional de tales ocupaciones, por lo que se podía aprovechar tal relación para obtener información de esa estructura, más allá de la que pudiera proporcionar la información meramente espectral. El sensor MISR incorpora 9 cámaras a diferentes ángulos para capturar 9 imágenes casi simultáneas del mismo punto, lo que permite estimar con relativa fiabilidad la respuesta anisotrópica de la superficie terrestre. Varios trabajos han demostrado que se pueden estimar variables relacionadas con la estructura de la vegetación con la información que proporciona MISR. En esta Tesis se ha realizado una primera aplicación a la Península Ibérica, para comprobar su utilidad a la hora de estimar variables de interés forestal. En un primer paso se ha analizado la variabilidad temporal que se produce en los datos, debido a los cambios en la geometría de captación, es decir, debido a la posición relativa de sensores y fuente de iluminación, que en este caso es el Sol. Se ha comprobado cómo la anisotropía es mayor desde finales de otoño hasta principios de primavera debido a que la posición del Sol es más cercana al plano de los sensores. También se ha comprobado que los valores máximo y mínimo se van desplazando temporalmente entre el centro y el extremo angular. En la caracterización multiangular de ocupaciones del suelo de CORINE Land Cover que se ha realizado, se puede observar cómo la forma predominante en las imágenes con el Sol más alto es convexa con un máximo en la cámara más cercana a la fuente de iluminación. Sin embargo, cuando el Sol se encuentra mucho más bajo, ese máximo es muy externo. Por otra parte, los datos obtenidos en verano son mucho más variables para cada ocupación que los de noviembre, posiblemente debido al aumento proporcional de las zonas en sombra. Para comprobar si la información multiangular tiene algún efecto en la obtención de imágenes clasificadas según ocupación y usos del suelo, se han realizado una serie de clasificaciones variando la información utilizada, desde sólo multiespectral, a multiangular y multiespectral. Los resultados muestran que, mientras para las clasificaciones más genéricas la información multiangular proporciona los peores resultados, a medida que se amplían el número de clases a obtener tal información mejora a lo obtenido únicamente con información multiespectral. Por otra parte, se ha realizado una estimación de variables cuantitativas como la fracción de cabida cubierta (Fcc) y la altura de la vegetación a partir de información proporcionada por MISR a diferentes resoluciones. En el valle de Alcudia (Ciudad Real) se ha estimado la fracción de cabida cubierta del arbolado para un píxel de 275 m utilizando redes neuronales. Los resultados muestran que utilizar información multiespectral y multiangular puede mejorar casi un 20% las estimaciones realizadas sólo con datos multiespectrales. Además, las relaciones obtenidas llegan al 0,7 de R con errores inferiores a un 10% en Fcc, siendo éstos mucho mejores que los obtenidos con el producto elaborado a partir de datos multiespectrales del sensor Moderate Resolution Imaging Spectroradiometer (MODIS), también a bordo de Terra, para la misma variable. Por último, se ha estimado la fracción de cabida cubierta y la altura efectiva de la vegetación para 700.000 ha de la provincia de Murcia, con una resolución de 1.100 m. Los resultados muestran la relación existente entre los datos espectrales y los multiangulares, obteniéndose coeficientes de Spearman del orden de 0,8 en el caso de la fracción de cabida cubierta de la vegetación, y de 0,4 en el caso de la altura efectiva. Las estimaciones de ambas variables con redes neuronales y diversas combinaciones de datos, arrojan resultados con R superiores a 0,85 para el caso del grado de cubierta vegetal, y 0,6 para la altura efectiva. Los parámetros multiangulares proporcionados en los productos elaborados con MISR a 1.100 m, no obtienen buenos resultados por sí mismos pero producen cierta mejora al incorporarlos a la información espectral. Los errores cuadráticos medios obtenidos son inferiores a 0,016 para la Fcc de la vegetación en tanto por uno, y 0,7 m para la altura efectiva de la misma. Regresiones geográficamente ponderadas muestran además que localmente se pueden obtener mejores resultados aún mejores, especialmente cuando hay una mayor variabilidad espacial de las variables estimadas. En resumen, la utilización de los datos proporcionados por MISR ofrece una prometedora vía de mejora de resultados en la media-baja resolución, tanto para la clasificación de imágenes como para la obtención de variables cuantitativas de la estructura de la vegetación. ABSTRACT Applications of remote sensing for monitoring what is happening on the land surface have been multiplied and refined with the launch of new sensors by different Space Agencies. The need of having up to date and spatially homogeneous data, has led to the development of new programs such as the Earth Observing System (EOS) of the National Aeronautics and Space Administration (NASA). One of the sensors incorporating the flagship of that program, the TERRA satellite, is Multi-angle Imaging Spectroradiometer (MISR), designed to capture the multi-angle information of the Earth's surface. Since the 1970s, it was known that the reflectance of various land covers and land uses varied depending on the viewing and ilumination angles, so they are anisotropic. Such variation was also related to the three dimensional structure of such covers, so that one could take advantage of such a relationship to obtain information from that structure, beyond which spectral information could provide. The MISR sensor incorporates 9 cameras at different angles to capture 9 almost simultaneous images of the same point, allowing relatively reliable estimates of the anisotropic response of the Earth's surface. Several studies have shown that we can estimate variables related to the vegetation structure with the information provided by this sensor, so this thesis has made an initial application to the Iberian Peninsula, to check their usefulness in estimating forest variables of interest. In a first step we analyzed the temporal variability that occurs in the data, due to the changes in the acquisition geometry, i.e. the relative position of sensor and light source, which in this case is the Sun. It has been found that the anisotropy is greater from late fall through early spring due to the Sun's position closer to the plane of the sensors. It was also found that the maximum and minimum values are displaced temporarily between the center and the ends. In characterizing CORINE Land Covers that has been done, one could see how the predominant form in the images with the highest sun is convex with a maximum in the camera closer to the light source. However, when the sun is much lower, the maximum is external. Moreover, the data obtained for each land cover are much more variable in summer that in November, possibly due to the proportional increase in shadow areas. To check whether the information has any effect on multi-angle imaging classification of land cover and land use, a series of classifications have been produced changing the data used, from only multispectrally, to multi-angle and multispectral. The results show that while for the most generic classifications multi-angle information is the worst, as there are extended the number of classes to obtain such information it improves the results. On the other hand, an estimate was made of quantitative variables such as canopy cover and vegetation height using information provided by MISR at different resolutions. In the valley of Alcudia (Ciudad Real), we estimated the canopy cover of trees for a pixel of 275 m by using neural networks. The results showed that using multispectral and multiangle information can improve by almost 20% the estimates that only used multispectral data. Furthermore, the relationships obtained reached an R coefficient of 0.7 with errors below 10% in canopy cover, which is much better result than the one obtained using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), also onboard Terra, for the same variable. Finally we estimated the canopy cover and the effective height of the vegetation for 700,000 hectares in the province of Murcia, with a spatial resolution of 1,100 m. The results show a relationship between the spectral and the multi-angle data, and provide estimates of the canopy cover with a Spearman’s coefficient of 0.8 in the case of the vegetation canopy cover, and 0.4 in the case of the effective height. The estimates of both variables using neural networks and various combinations of data, yield results with an R coefficient greater than 0.85 for the case of the canopy cover, and 0.6 for the effective height. Multi-angle parameters provided in the products made from MISR at 1,100 m pixel size, did not produce good results from themselves but improved the results when included to the spectral information. The mean square errors were less than 0.016 for the canopy cover, and 0.7 m for the effective height. Geographically weighted regressions also showed that locally we can have even better results, especially when there is high spatial variability of estimated variables. In summary, the use of the data provided by MISR offers a promising way of improving remote sensing performance in the low-medium spatial resolution, both for image classification and for the estimation of quantitative variables of the vegetation structure.
Resumo:
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
Mobile activity recognition focuses on inferring the current activities of a mobile user by leveraging the sensory data that is available on today’s smart phones. The state of the art in mobile activity recognition uses traditional classification learning techniques. Thus, the learning process typically involves: i) collection of labelled sensory data that is transferred and collated in a centralised repository; ii) model building where the classification model is trained and tested using the collected data; iii) a model deployment stage where the learnt model is deployed on-board a mobile device for identifying activities based on new sensory data. In this paper, we demonstrate the Mobile Activity Recognition System (MARS) where for the first time the model is built and continuously updated on-board the mobile device itself using data stream mining. The advantages of the on-board approach are that it allows model personalisation and increased privacy as the data is not sent to any external site. Furthermore, when the user or its activity profile changes MARS enables promptly adaptation. MARS has been implemented on the Android platform to demonstrate that it can achieve accurate mobile activity recognition. Moreover, we can show in practise that MARS quickly adapts to user profile changes while at the same time being scalable and efficient in terms of consumption of the device resources.
Resumo:
El objeto de la Tesis es el régimen de humedad de los suelos de la España Peninsular, cuya determinación a partir de datos climáticos se ha realizado de acuerdo con la metodología incluida en la taxonomía norteamericana de suelos (Soil Survey StafF 1975, 1994). Esta metodología presenta algunas indefiniciones, que se pretenden solventar. La investigación ha consistido en la clasificación de los regímenes de humedad del suelo de la España Peninsular y su representación cartográfica. Se han considerado varios métodos de determinación de la evapotranspiración y varios modelos de estimación del régimen de humedad. La clasificación numérica de los regímenes de 467 localidades ha permitido su agrupamiento en clases y su subdivisión natural. El contraste de esta información con la aportada por la cartografía de series de vegetación, mediante un sistema de información geográfica tipo reticular, ha servido para afinar los mapas. El resultado revela que un modelo modificado sirve para subsanar las indefiniciones y posibilita la adaptación de los grupos a las condiciones naturales. SUMMARY The soil moisture regime defined by the Soil Taxonomy (Soil Survey StafF, 1975, 1994) has been determined by Newhall's simulation model from climatic data. This classification presents some diffículties as gaps and overlaps in the definitions, that we have tried to solve. The soil moisture regimes have been determined by different methods and the results have been classified and mapped. We have compared differents methods of evapotranspiration estimation. A simple modification of Newhall's model matchs better the natural conditions of Spain when comparing with the potential vegatation. A ráster geographical information system has been used to overlay the information layers. As result of the numerical classification of soil moistures regimes of 467 sites, the regimes have been grouped in classes adapted to the natural conditions of Spain. We have compared the results with the potential vegetation map in order to tune the soil moisture regime boundaries. We propose a new soil moisture regimes classification divided in two categories. This classification is adapted to Spanish natural conditions.
Resumo:
Background Objective assessment of psychomotor skills has become an important challenge in the training of minimally invasive surgical (MIS) techniques. Currently, no gold standard defining surgical competence exists for classifying residents according to their surgical skills. Supervised classification has been proposed as a means for objectively establishing competence thresholds in psychomotor skills evaluation. This report presents a study comparing three classification methods for establishing their validity in a set of tasks for basic skills’ assessment. Methods Linear discriminant analysis (LDA), support vector machines (SVM), and adaptive neuro-fuzzy inference systems (ANFIS) were used. A total of 42 participants, divided into an experienced group (4 expert surgeons and 14 residents with >10 laparoscopic surgeries performed) and a nonexperienced group (16 students and 8 residents with <10 laparoscopic surgeries performed), performed three box trainer tasks validated for assessment of MIS psychomotor skills. Instrument movements were captured using the TrEndo tracking system, and nine motion analysis parameters (MAPs) were analyzed. The performance of the classifiers was measured by leave-one-out cross-validation using the scores obtained by the participants. Results The mean accuracy performances of the classifiers were 71 % (LDA), 78.2 % (SVM), and 71.7 % (ANFIS). No statistically significant differences in the performance were identified between the classifiers. Conclusions The three proposed classifiers showed good performance in the discrimination of skills, especially when information from all MAPs and tasks combined were considered. A correlation between the surgeons’ previous experience and their execution of the tasks could be ascertained from results. However, misclassifications across all the classifiers could imply the existence of other factors influencing psychomotor competence.
Resumo:
Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.
Resumo:
El estudio de los ciclos del combustible nuclear requieren de herramientas computacionales o "códigos" versátiles para dar respuestas al problema multicriterio de evaluar los actuales ciclos o las capacidades de las diferentes estrategias y escenarios con potencial de desarrollo en a nivel nacional, regional o mundial. Por otra parte, la introducción de nuevas tecnologías para reactores y procesos industriales hace que los códigos existentes requieran nuevas capacidades para evaluar la transición del estado actual del ciclo del combustible hacia otros más avanzados y sostenibles. Brevemente, esta tesis se centra en dar respuesta a las principales preguntas, en términos económicos y de recursos, al análisis de escenarios de ciclos de combustible, en particular, para el análisis de los diferentes escenarios del ciclo del combustible de relativa importancia para España y Europa. Para alcanzar este objetivo ha sido necesaria la actualización y el desarrollo de nuevas capacidades del código TR_EVOL (Transition Evolution code). Este trabajo ha sido desarrollado en el Programa de Innovación Nuclear del CIEMAT desde el año 2010. Esta tesis se divide en 6 capítulos. El primer capítulo ofrece una visión general del ciclo de combustible nuclear, sus principales etapas y los diferentes tipos utilizados en la actualidad o en desarrollo para el futuro. Además, se describen las fuentes de material nuclear que podrían ser utilizadas como combustible (uranio y otros). También se puntualizan brevemente una serie de herramientas desarrolladas para el estudio de estos ciclos de combustible nuclear. El capítulo 2 está dirigido a dar una idea básica acerca de los costes involucrados en la generación de electricidad mediante energía nuclear. Aquí se presentan una clasificación de estos costos y sus estimaciones, obtenidas en la bibliografía, y que han sido evaluadas y utilizadas en esta tesis. Se ha incluido también una breve descripción del principal indicador económico utilizado en esta tesis, el “coste nivelado de la electricidad”. El capítulo 3 se centra en la descripción del código de simulación desarrollado para el estudio del ciclo del combustible nuclear, TR_EVOL, que ha sido diseñado para evaluar diferentes opciones de ciclos de combustibles. En particular, pueden ser evaluados las diversos reactores con, posiblemente, diferentes tipos de combustibles y sus instalaciones del ciclo asociadas. El módulo de evaluaciones económica de TR_EVOL ofrece el coste nivelado de la electricidad haciendo uso de las cuatro fuentes principales de información económica y de la salida del balance de masas obtenido de la simulación del ciclo en TR_EVOL. Por otra parte, la estimación de las incertidumbres en los costes también puede ser efectuada por el código. Se ha efectuado un proceso de comprobación cruzada de las funcionalidades del código y se descrine en el Capítulo 4. El proceso se ha aplicado en cuatro etapas de acuerdo con las características más importantes de TR_EVOL, balance de masas, composición isotópica y análisis económico. Así, la primera etapa ha consistido en el balance masas del ciclo de combustible nuclear actual de España. La segunda etapa se ha centrado en la comprobación de la composición isotópica del flujo de masas mediante el la simulación del ciclo del combustible definido en el proyecto CP-ESFR UE. Las dos últimas etapas han tenido como objetivo validar el módulo económico. De este modo, en la tercera etapa han sido evaluados los tres principales costes (financieros, operación y mantenimiento y de combustible) y comparados con los obtenidos por el proyecto ARCAS, omitiendo los costes del fin del ciclo o Back-end, los que han sido evaluado solo en la cuarta etapa, haciendo uso de costes unitarios y parámetros obtenidos a partir de la bibliografía. En el capítulo 5 se analizan dos grupos de opciones del ciclo del combustible nuclear de relevante importancia, en términos económicos y de recursos, para España y Europa. Para el caso español, se han simulado dos grupos de escenarios del ciclo del combustible, incluyendo estrategias de reproceso y extensión de vida de los reactores. Este análisis se ha centrado en explorar las ventajas y desventajas de reprocesado de combustible irradiado en un país con una “relativa” pequeña cantidad de reactores nucleares. Para el grupo de Europa se han tratado cuatro escenarios, incluyendo opciones de transmutación. Los escenarios incluyen los reactores actuales utilizando la tecnología reactor de agua ligera y ciclo abierto, un reemplazo total de los reactores actuales con reactores rápidos que queman combustible U-Pu MOX y dos escenarios del ciclo del combustible con transmutación de actínidos minoritarios en una parte de los reactores rápidos o en sistemas impulsados por aceleradores dedicados a transmutación. Finalmente, el capítulo 6 da las principales conclusiones obtenidas de esta tesis y los trabajos futuros previstos en el campo del análisis de ciclos de combustible nuclear. ABSTRACT The study of the nuclear fuel cycle requires versatile computational tools or “codes” to provide answers to the multicriteria problem of assessing current nuclear fuel cycles or the capabilities of different strategies and scenarios with potential development in a country, region or at world level. Moreover, the introduction of new technologies for reactors and industrial processes makes the existing codes to require new capabilities to assess the transition from current status of the fuel cycle to the more advanced and sustainable ones. Briefly, this thesis is focused in providing answers to the main questions about resources and economics in fuel cycle scenario analyses, in particular for the analysis of different fuel cycle scenarios with relative importance for Spain and Europe. The upgrade and development of new capabilities of the TR_EVOL code (Transition Evolution code) has been necessary to achieve this goal. This work has been developed in the Nuclear Innovation Program at CIEMAT since year 2010. This thesis is divided in 6 chapters. The first one gives an overview of the nuclear fuel cycle, its main stages and types currently used or in development for the future. Besides the sources of nuclear material that could be used as fuel (uranium and others) are also viewed here. A number of tools developed for the study of these nuclear fuel cycles are also briefly described in this chapter. Chapter 2 is aimed to give a basic idea about the cost involved in the electricity generation by means of the nuclear energy. The main classification of these costs and their estimations given by bibliography, which have been evaluated in this thesis, are presented. A brief description of the Levelized Cost of Electricity, the principal economic indicator used in this thesis, has been also included. Chapter 3 is focused on the description of the simulation tool TR_EVOL developed for the study of the nuclear fuel cycle. TR_EVOL has been designed to evaluate different options for the fuel cycle scenario. In particular, diverse nuclear power plants, having possibly different types of fuels and the associated fuel cycle facilities can be assessed. The TR_EVOL module for economic assessments provides the Levelized Cost of Electricity making use of the TR_EVOL mass balance output and four main sources of economic information. Furthermore, uncertainties assessment can be also carried out by the code. A cross checking process of the performance of the code has been accomplished and it is shown in Chapter 4. The process has been applied in four stages according to the most important features of TR_EVOL. Thus, the first stage has involved the mass balance of the current Spanish nuclear fuel cycle. The second stage has been focused in the isotopic composition of the mass flow using the fuel cycle defined in the EU project CP-ESFR. The last two stages have been aimed to validate the economic module. In the third stage, the main three generation costs (financial cost, O&M and fuel cost) have been assessed and compared to those obtained by ARCAS project, omitting the back-end costs. This last cost has been evaluated alone in the fourth stage, making use of some unit cost and parameters obtained from the bibliography. In Chapter 5 two groups of nuclear fuel cycle options with relevant importance for Spain and Europe are analyzed in economic and resources terms. For the Spanish case, two groups of fuel cycle scenarios have been simulated including reprocessing strategies and life extension of the current reactor fleet. This analysis has been focused on exploring the advantages and disadvantages of spent fuel reprocessing in a country with relatively small amount of nuclear power plants. For the European group, four fuel cycle scenarios involving transmutation options have been addressed. Scenarios include the current fleet using Light Water Reactor technology and open fuel cycle, a full replacement of the initial fleet with Fast Reactors burning U-Pu MOX fuel and two fuel cycle scenarios with Minor Actinide transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems. Finally, Chapter 6 gives the main conclusions obtained from this thesis and the future work foreseen in the field of nuclear fuel cycle analysis.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
Stream-mining approach is defined as a set of cutting-edge techniques designed to process streams of data in real time, in order to extract knowledge. In the particular case of classification, stream-mining has to adapt its behaviour to the volatile underlying data distributions, what has been called concept drift. Moreover, it is important to note that concept drift may lead to situations where predictive models become invalid and have therefore to be updated to represent the actual concepts that data poses. In this context, there is a specific type of concept drift, known as recurrent concept drift, where the concepts represented by data have already appeared in the past. In those cases the learning process could be saved or at least minimized by applying a previously trained model. This could be extremely useful in ubiquitous environments that are characterized by the existence of resource constrained devices. To deal with the aforementioned scenario, meta-models can be used in the process of enhancing the drift detection mechanisms used by data stream algorithms, by representing and predicting when the change will occur. There are some real-world situations where a concept reappears, as in the case of intrusion detection systems (IDS), where the same incidents or an adaptation of them usually reappear over time. In these environments the early prediction of drift by means of a better knowledge of past models can help to anticipate to the change, thus improving efficiency of the model regarding the training instances needed. By means of using meta-models as a recurrent drift detection mechanism, the ability to share concepts representations among different data mining processes is open. That kind of exchanges could improve the accuracy of the resultant local model as such model may benefit from patterns similar to the local concept that were observed in other scenarios, but not yet locally. This would also improve the efficiency of training instances used during the classification process, as long as the exchange of models would aid in the application of already trained recurrent models, that have been previously seen by any of the collaborative devices. Which it is to say that the scope of recurrence detection and representation is broaden. In fact the detection, representation and exchange of concept drift patterns would be extremely useful for the law enforcement activities fighting against cyber crime. Being the information exchange one of the main pillars of cooperation, national units would benefit from the experience and knowledge gained by third parties. Moreover, in the specific scope of critical infrastructures protection it is crucial to count with information exchange mechanisms, both from a strategical and technical scope. The exchange of concept drift detection schemes in cyber security environments would aid in the process of preventing, detecting and effectively responding to threads in cyber space. Furthermore, as a complement of meta-models, a mechanism to assess the similarity between classification models is also needed when dealing with recurrent concepts. In this context, when reusing a previously trained model a rough comparison between concepts is usually made, applying boolean logic. The introduction of fuzzy logic comparisons between models could lead to a better efficient reuse of previously seen concepts, by applying not just equal models, but also similar ones. This work faces the aforementioned open issues by means of: the MMPRec system, that integrates a meta-model mechanism and a fuzzy similarity function; a collaborative environment to share meta-models between different devices; a recurrent drift generator that allows to test the usefulness of recurrent drift systems, as it is the case of MMPRec. Moreover, this thesis presents an experimental validation of the proposed contributions using synthetic and real datasets.
Resumo:
KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes–i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily.
Resumo:
Sequence-specific transactivation by p53 is essential to its role as a tumor suppressor. A modified tetracycline-inducible system was established to search for transcripts that were activated soon after p53 induction. Among 9,954 unique transcripts identified by serial analysis of gene expression, 34 were increased more than 10-fold; 31 of these had not previously been known to be regulated by p53. The transcription patterns of these genes, as well as previously described p53-regulated genes, were evaluated and classified in a panel of widely studied colorectal cancer cell lines. “Class I” genes were uniformly induced by p53 in all cell lines; “class II” genes were induced in a subset of the lines; and “class III” genes were not induced in any of the lines. These genes were also distinguished by the timing of their induction, their induction by clinically relevant chemotherapeutic agents, the absolute requirement for p53 in this induction, and their inducibility by p73, a p53 homolog. The results revealed substantial heterogeneity in the transcriptional responses to p53, even in cells derived from a single epithelial cell type, and pave the way to a deeper understanding of p53 tumor suppressor action.
Resumo:
VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html.
Resumo:
The iProClass database is an integrated resource that provides comprehensive family relationships and structural and functional features of proteins, with rich links to various databases. It is extended from ProClass, a protein family database that integrates PIR superfamilies and PROSITE motifs. The iProClass currently consists of more than 200 000 non-redundant PIR and SWISS-PROT proteins organized with more than 28 000 superfamilies, 2600 domains, 1300 motifs, 280 post-translational modification sites and links to more than 30 databases of protein families, structures, functions, genes, genomes, literature and taxonomy. Protein and family summary reports provide rich annotations, including membership information with length, taxonomy and keyword statistics, full family relationships, comprehensive enzyme and PDB cross-references and graphical feature display. The database facilitates classification-driven annotation for protein sequence databases and complete genomes, and supports structural and functional genomic research. The iProClass is implemented in Oracle 8i object-relational system and available for sequence search and report retrieval at http://pir.georgetow n.edu/iproclass/.