944 resultados para UV CETI STARS
Resumo:
Replication protein A (RPA) is required for both DNA replication and nucleotide excision repair. Previous studies have shown that RPA interacts with the tumor suppressor p53. Herein, we have mapped a 20-amino acid region in the N-terminal part of p53 that is essential for its binding to RPA. This region is distinct from the minimal activation domain of p53 previously identified. We also demonstrate that UV radiation of cells greatly reduces the ability of RPA to bind to p53. Interestingly, damage-induced hyperphosphorylated RPA does not associate with p53. Furthermore, down-regulation of the RPA/p53 interaction is dependent upon the capability of cells to perform global genome repair. On the basis of these data, we propose that RPA may participate in the coordination of DNA repair with the p53-dependent checkpoint control by sensing UV damage and releasing p53 to activate its downstream targets.
Resumo:
The genetic basis of spontaneous melanoma formation in spotted dorsal (Sd) Xiphophorus platyfish–swordtail hybrids has been studied for decades, and is adequately explained by a two-gene inheritance model involving a sex-linked oncogene, Xmrk, and an autosomal tumor suppressor, DIFF. The Xmrk oncogene encodes a receptor tyrosine kinase related to EGFR; the nature of the DIFF tumor suppressor gene is unknown. We analyzed the genetic basis of UV-B-induced melanoma formation in closely related, spotted side platyfish–swordtail hybrids, which carry a different sex-linked pigment pattern locus, Sp. We UV-irradiated spotted side Xiphophorus platyfish–swordtail backcross hybrids to induce melanomas at frequencies 6-fold higher than occur spontaneously in unirradiated control animals. To identify genetic determinants of melanoma susceptibility in this UV-inducible Xiphophorus model, we genotyped individual animals from control and UV-irradiated experimental regimes using allozyme and DNA restriction fragment length polymorphisms and tested for joint segregation of genetic markers with pigmentation phenotype and UV-induced melanoma formation. Joint segregation results show linkage of a CDKN2-like DNA polymorphism with UV-B-induced melanoma formation in these hybrids. The CDKN2-like polymorphism maps to Xiphophorus linkage group V and exhibits recombination fractions with ES1 and MDH2 allozyme markers consistent with previous localization of the DIFF tumor suppressor locus. Our results indicate that the CDKN2-like sequence we have cloned and mapped is a candidate for the DIFF tumor suppressor gene.
Resumo:
Exposing skin to UVB (280–320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320–400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function.
Resumo:
The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components.
Resumo:
Previously, we identified the heavy chain of ferritin as a developmentally regulated nuclear protein of embryonic chicken corneal epithelial cells. The nuclear ferritin is assembled into a supramolecular form indistinguishable from the cytoplasmic form of ferritin found in other cell types and thus most likely has iron-sequestering capabilities. Free iron, via the Fenton reaction, is known to exacerbate UV-induced and other oxidative damage to cellular components, including DNA. Since corneal epithelial cells are constantly exposed to UV light, we hypothesized that the nuclear ferritin might protect the DNA of these cells from free radical damage. To test this possibility, primary cultures of cells from corneal epithelium and stroma, and from skin epithelium and stroma, were UV irradiated, and DNA strand breaks were detected by an in situ 3′-end labeling method. Corneal epithelial cells without nuclear ferritin were also examined. We observed that the corneal epithelial cells with nuclear ferritin had significantly less DNA breakage than other cell types examined. Furthermore, increasing the iron concentration of the culture medium exacerbated the generation of UV-induced DNA strand breaks in corneal and skin fibroblasts, but not in the corneal epithelial cells. Most convincingly, corneal epithelial cells in which the expression of nuclear ferritin was inhibited became much more susceptible to UV-induced DNA damage. Therefore, it seems that corneal epithelial cells have evolved a novel, nuclear ferritin-based mechanism for protecting their DNA against UV damage.
Resumo:
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.
Resumo:
Cells from patients with Cockayne syndrome (CS) are hypersensitive to DNA-damaging agents and are unable to restore damage-inhibited RNA synthesis. On the basis of repair kinetics of different types of lesions in transcriptionally active genes, we hypothesized previously that impaired transcription in CS cells is a consequence of defective transcription initiation after DNA damage induction. Here, we investigated the effect of UV irradiation on transcription by using an in vitro transcription system that allowed uncoupling of initiation from elongation events. Nuclear extracts prepared from UV-irradiated or mock-treated normal human and CS cells were assayed for transcription activity on an undamaged β-globin template. Transcription activity in nuclear extracts closely mimicked kinetics of transcription in intact cells: extracts from normal cells prepared 1 h after UV exposure showed a strongly reduced activity, whereas transcription activity was fully restored in extracts prepared 6 h after treatment. Extracts from CS cells exhibited reduced transcription activity at any time after UV exposure. Reduced transcription activity in extracts coincided with a strong reduction of RNA polymerase II (RNAPII) containing hypophosphorylated C-terminal domain, the form of RNAPII known to be recruited to the initiation complex. These results suggest that inhibition of transcription after UV irradiation is at least partially caused by repression of transcription initiation and not solely by blocked elongation at sites of lesions. Generation of hypophosphorylated RNAPII after DNA damage appears to play a crucial role in restoration of transcription. CS proteins may be required for this process in a yet unknown way.
Resumo:
Plants are continuously subjected to UV-B radiation (UV-B; 280–320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulation, and its interrelationship with photoreactivation in response to UV-B-induced DNA damage is still poorly understood. In this study, we analyzed somatic homologous recombination in a transgenic Arabidopsis line carrying a β-glucuronidase gene as a recombination marker and in offsprings of crosses of this line with a photolyase deficient uvr2–1 mutant. UV-B radiation stimulated recombination frequencies in a dose-dependent manner correlating linearly with cyclobutane pyrimidine dimer (CPD) levels. Genetic deficiency for CPD-specific photoreactivation resulted in a drastic increase of recombination events, indicating that homologous recombination might be directly involved in eliminating CPD damage. UV-B irradiation stimulated recombination mainly in the presence of photosynthetic active radiation (400–700 nm) irrespective of photolyase activities. Our results suggest that UV-B-induced recombination processes may depend on energy supply derived from photosynthesis.
Resumo:
The premature photoaging of the skin is mediated by the sensitization of reactive oxygen species after absorption of ultraviolet radiation by endogenous chromophores. Yet identification of UV-A-absorbing chromophores in the skin that quantitatively account for the action spectra of the physiological responses of photoaging has remained elusive. This paper reports that the in vitro action spectrum for singlet oxygen generation after excitation of trans-urocanic acid mimics the in vivo UV-A action spectrum for the photosagging of mouse skin. The data presented provide evidence suggesting that the UV-A excitation of trans-urocanic acid initiates chemical processes that result in the photoaging of skin.
Resumo:
There has been a great deal of recent attention on the suspected increase in amphibian deformities. However, most reports of amphibian deformities have been anecdotal, and no experiments in the field under natural conditions have been performed to investigate this phenomenon. Under laboratory conditions, a variety of agents can induce deformities in amphibians. We investigated one of these agents, UV-B radiation, in field experiments, as a cause for amphibian deformities. We monitored hatching success and development in long-toed salamanders under UV-B shields and in regimes that allowed UV-B radiation. Embryos under UV-B shields had a significantly higher hatching rate and fewer deformities, and developed more quickly than those exposed to UV-B. Deformities may contribute directly to embryo mortality, and they may affect an individual’s subsequent survival after hatching.
Resumo:
Stats1 and 3 (signal transducers and activators of transcription) can be activated simultaneously, although not necessarily to the same degree or duration, by the interaction of cells with the same polypeptide ligand (EGF, PDGF, or high concentrations of IL-6, for example). However, these two Stat proteins can mediate opposing effects on cell growth and survival. Stat1 activation slows growth and promotes apoptosis. In contrast, activated Stat3 can protect cells from apoptosis. Furthermore, a constitutively active form of Stat3, Stat3-C (bridged by S-S linkages between cysteines instead of phosphotyrosines) can induce cellular transformation of fibroblasts. We have determined that fibroblasts transformed by Stat3-C are more resistant to proapoptotic stimuli than nontransformed cells. Also, to examine the potential opposing roles in apoptosis of Stat1 and Stat3, we studied the cervical carcinoma-derived cell line, Me180, which undergoes Stat1-dependent, IFNγ-induced apoptosis. Me180 cells that express Stat3-C are protected against IFNγ-mediated apoptosis.
Resumo:
Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology.
Resumo:
The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined.