942 resultados para Tyrosine Hydroxylase
Resumo:
In Schizosaccharomyces pombe (fission yeast), the transition from G2 phase of the cell cycle to mitosis is under strict regulation. The activation of Cdc2, a cyclin dependent serine/threonine protein kinase, is the critical control step in this process. The Cdc2/Cyclin-B (Cdc13) complex is regulated by Wee1 tyrosine kinase and Cdc25 tyrosine phosphatase, which work antagonistically to control progression into mitosis. Hyperactivation of the Cdc2/Cdc13 complex by phosphorylation results in premature mitosis, and as a consequence leads to genome instability. This is referred to as mitotic catastrophe, a lethal phenotype associated with chromosomal segregation abnormalities including chromosome breakage. Six mitotic catastrophe loci were found, five of which have been characterized and identified as various activators and repressors of the core mitotic control. The locus for mcs3 remains unknown. I used tetrad analysis in this study to determine the linkage distance between three genes suspected of flanking the region in which mcs3 is located. Linkage distances obtained in this study confirm that the SPBC428.10 and met17, as well as SPBC428.10 and wpl1 are tightly linked, suggesting this is an area of low recombination. Further linkage analysis should be conducted to determine the precise location of mcs3-12.
Resumo:
Cell size control and mitotic timing in Schizosaccharomyces pombe is coupled to the environment through several signal transduction pathways that include stress response, checkpoint and nutritional status impinging on Cdc25 tyrosine phosphatase and Wee1 tyrosine kinase. These in turn regulate Cdc2 (Cdk1) activity and through a double feedback loop, further activates Cdc25 on 12 possible phosphorylation sites as well as inhibiting Wee1. Phosphomutants of the T89 Cdc2 phosphorylation site on Cdc25, one with a glutamate substitution (T89E) which is known to phosphomimetically activate proteins and an alanine substitution (T89A), which is known to block phosphorylation, exhibit a small steady-state cell size (semi-wee phenotype), a known hallmark for aberrant mitotic control. To determine whether the T89 phosphorylation site plays an integral role in mitotic timing, the phosphomutants were subjected to nitrogen shifts to analyze their transient response in the context of nutritional control. Results for both up and downshifts were replicated for the T89E phosphomutant, however, for the T89A phosphomutant, only a nutritional downshift has been completed so far. We found that the steady-state cell size of both phosphomutants was significantly smaller than the wild-type and in the context of nutritional control. Furthermore, the constitutively activated T89E phosphomutant exhibits residual mitotic entry, whereas the wild-type undergoes a complete mitotic suppression with mitotic recovery also occurring earlier than the wild-type. In response to downshifts, both phosphomutants exhibited an identical response to the wild-type. Further characterization of the other Cdc2 phosphorylation sites on Cdc25 are required before conclusions can be drawn, however T89 remains a strong candidate for being important in activating Cdc25.
Resumo:
RET is a receptor tyrosine kinase that mediates key signaling events, and promotes cell survival, development, and migration. Activation of RET requires a ligand from the glial cell line-derived neurotrophic factor (GDNF) family and a co-receptor from the GDNF family receptor α (GFRα). Alternative splicing of RET leads to two major isoforms, RET9 and RET51, that contain distinct C-terminal amino acids. Differences in their cytoplasmic tails confer differential binding to adaptor proteins, and in this study, the membrane cytoskeletal-linker protein ezrin was shown in an interaction with RET51, but not RET9, in a ligand- and kinase-dependent manner. Results indicated that Y1096 on RET51 is the ezrin recruitment site, and the adaptor protein Grb2 may mediate this interaction. These results suggest that ezrin may play a role in the downstream signaling and recycling pathways of RET51. Thus, the identified novel interaction may provide insight in the longer term into how ezrin and RET51 contribute together to functional processes such as cell migration and invasion.
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Resumo:
Explaining the uniqueness of the acquired somatic JAK2 V617F mutation, which is present in more than 95% of polycythemia vera patients, has been a challenge. The V617F mutation in the pseudokinase domain of JAK2 renders the unmutated kinase domain constitutively active. We have performed random mutagenesis at position 617 of JAK2 and tested each of the 20 possible amino acids for ability to induce constitutive signaling in Ba/F3 cells expressing the erythropoietin receptor. Four JAK2 mutants, V617W, V617M, V617I, and V617L, were able to induce cytokine independence and constitutive downstream signaling. Only V617W induced a level of constitutive activation comparable with V617F. Also, only V617W stabilized tyrosine-phosphorylated suppressor of cytokine signaling 3 ( SOCS3), a mechanism by which JAK2 V617F overcomes inhibition by SOCS3. The V617W mutant induced a myeloproliferative disease in mice, mainly characterized by erythrocytosis and megakaryocytic proliferation. Although JAK2 V617W would predictably be pathogenic in humans, the substitution of the Val codon, GTC, by TTG, the codon for Trp, would require three base pair changes, and thus it is unlikely to occur. We discuss how the predicted conformations of the activated JAK2 mutants can lead to better screening assays for novel small molecule inhibitors.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]
Resumo:
Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.
Resumo:
Abstract A classic physiologic response to hypoxia in humans is the up-regulation of the ERYTHROPOIETIN (EPO) gene, which is the central regulator of red blood cell mass. The EPO gene, in turn, is activated by hypoxia inducible factor (HIF). HIF is a transcription factor consisting of an alpha subunit (HIF-alpha) and a beta subunit (HIF-beta). Under normoxic conditions, prolyl hydroxylase domain protein (PHD, also known as HIF prolyl hydroxylase and egg laying-defective nine protein) site specifically hydroxylates HIF-alpha in a conserved LXXLAP motif (where underlining indicates the hydroxylacceptor proline). This provides a recognition motif for the von Hippel Lindau protein, a component of an E3 ubiquitin ligase complex that targets hydroxylated HIF-alpha for degradation. Under hypoxic conditions, this inherently oxygen-dependent modification is arrested, thereby stabilizing HIF-alpha and allowing it to activate the EPO gene. We previously identified and characterized an erythrocytosis-associated HIF2A mutation, G537W. More recently, we reported two additional erythrocytosis-associated HIF2A mutations, G537R and M535V. Here, we describe the functional characterization of these two mutants as well as a third novel erythrocytosis-associated mutation, P534L. These mutations affect residues C-terminal to the LXXLAP motif. We find that all result in impaired degradation and thus aberrant stabilization of HIF-2alpha. However, each exhibits a distinct profile with respect to their effects on PHD2 binding and von Hippel Lindau interaction. These findings reinforce the importance of HIF-2alpha in human EPO regulation, demonstrate heterogeneity of functional defects arising from these mutations, and point to a critical role for residues C-terminal to the LXXLAP motif in HIF-alpha.
Resumo:
Despite compromised T cell antigen receptor (TCR) signaling, mice in which tyrosine 136 of the adaptor linker for activation of T cells (LAT) was constitutively mutated (Lat(Y136F) mice) accumulate CD4(+) T cells that trigger autoimmunity and inflammation. Here we show that equipping postthymic CD4(+) T cells with LATY136F molecules or rendering them deficient in LAT molecules triggers a lymphoproliferative disorder dependent on prior TCR engagement. Therefore, such disorders required neither faulty thymic T cell maturation nor LATY136F molecules. Unexpectedly, in CD4(+) T cells recently deprived of LAT, the proximal triggering module of the TCR induced a spectrum of protein tyrosine phosphorylation that largely overlapped the one observed in the presence of LAT. The fact that such LAT-independent signals result in lymphoproliferative disorders with excessive cytokine production demonstrates that LAT constitutes a key negative regulator of the triggering module and of the LAT-independent branches of the TCR signaling cassette.
Resumo:
We report the novel observation that engagement of ß2 integrins on human neutrophils is accompanied by increased levels of the small GTPases Rap1 and Rap2 in a membrane-enriched fraction and a concomitant decrease of these proteins in a granule-enriched fraction. In parallel, we observed a similar time-dependent decrease of gelatinase B (a marker of specific and gelatinase B-containing granules) but not myeloperoxidase (a marker of azurophil granules) in the granule fraction, and release of lactoferrin (a marker of specific granules) in the extracellular medium. Furthermore, inhibition of Src tyrosine kinases, or phosphoinositide 3-kinase with PP1 or LY294002, respectively, blocked ß2 integrin-induced degranulation and the redistribution of Rap1 and Rap2 to a membrane-enriched fraction. Consequently, the ß2 integrin-dependent exocytosis of specific and gelatinase B-containing granules occurs via a Src tyrosine kinase/phosphoinositide 3-kinase signaling pathway and is responsible for the translocation of Rap1 and Rap2 to the plasma membrane in human neutrophils.
Resumo:
Two distinct families of neuropeptides are known to endow platyhelminth nervous systems-the FMRFamide-like peptides (FLPs) and the neuropepticle Fs (NPFs). Flatworm FLPs are strusturally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydropliobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic Musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFarnide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flanworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.
Resumo:
Background and purpose: W/Wv and wild-type murine bladders were studied to determine whether the W/Wv phenotype, which causes a reduction in, but not abolition of, tyrosine kinase activity, is a useful tool to study the function of bladder interstitial cells of Cajal (ICC).
Experimental approach: Immunohistochemistry, tension recordings and microelectrode recordings of membrane potential were performed on wild-type and mutant bladders.
Key results: Wild-type and W/Wv detrusors contained c-Kit- and vimentin-immunopositive cells in comparable quantities, distribution and morphology. Electrical field stimulation evoked tetrodotoxin-sensitive contractions in wild-type and W/Wv detrusor strips. Atropine reduced wild-type responses by 50% whereas a 25% reduction occurred in W/Wv strips. The atropine-insensitive component was blocked by pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid in both tissue types. Wild-type and W/Wv detrusors had similar resting membrane potentials of -48 mV. Spontaneous electrical activity in both tissue types comprised action potentials and unitary potentials. Action potentials were nifedipine-sensitive whereas unitary potentials were not. Excitatory junction potentials were evoked by single pulses in both tissues. These were reduced by atropine in wild-type tissues but not in W/Wv preparations. The atropine-insensitive component was abolished by pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid in both preparations.
Conclusions and implications: Bladders from W/Wv mice contain c-Kit- and vimentin-immunopositive ICC. There are similarities in the electrical and contractile properties of W/Wv and wild-type detrusors. However, significant differences were found in the pharmacology of the responses to neurogenic stimulation with an apparent up-regulation of the purinergic component. These findings indicate that the W/Wv strain may not be the best model to study ICC function in the bladder.
Resumo:
We investigated whether inhibition of platelet-derived growth factor (PDGF) receptor tyrosine kinase activity would affect pericyte viability, vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR-2) expression and angiogenesis in a model of retinopathy of prematurity (ROP). ROP was induced in Sprague Dawley rats by exposure to 80% oxygen from postnatal (P) days 0 to 11 (with 3 hours/day in room air), and then room air from P12-18 (angiogenesis period). Shams were neonatal rats in room air from P0-18. STI571, a potent inhibitor of PDGF receptor tyrosine kinase, was administered from P12-18 at 50 or 100 mg/kg/day intraperitoneal (i.p.). Electron microscopy revealed that pericytes in the inner retina of both sham and ROP rats appeared normal; however STI571 induced a selective pericyte and vascular smooth muscle degeneration. Immunolabeling for caspase-3 and a-smooth muscle cell actin in consecutive paraffin sections of retinas confirmed that these degenerating cells were apoptotic pericytes. In all groups, VEGF and VEGFR-2 gene expression was located in ganglion cells, the inner nuclear layer, and retinal pigment epithelium. ROP was associated with an increase in both VEGF and VEGFR-2 gene expression and blood vessel profiles in the inner retina compared to sham rats. STI571 at both doses increased VEGF and VEGFR-2 mRNA and exacerbated angiogenesis in ROP rats, and in sham rats at 100 mg/kg/day. In conclusion, PDGF is required for pericyte viability and the subsequent prevention of VEGF/VEGFR-2 overexpression and angiogenesis in ROP.
Resumo:
We tested four genes [phenylalanine hydroxylase (PAH), the serotonin transporter (SLC6A4), monoamine oxidase B (MAOB), and the gamma-aminobutyric acid A receptor beta-3 subunit (GABRB3)] for their impact on five schizophrenia symptom factors: delusions, hallucinations, mania, depression, and negative symptoms. In a 90 family subset of the Irish Study of High Density Schizophrenia Families, the PAH 232 bp microsatellite allele demonstrated significant association with the delusions factor using both QTDT (F = 8.0, p = .031) and QPDTPHASE (chi-square = 12.54, p = .028). Also, a significant association between the GABRB3 191 bp allele and the hallucinations factor was detected using QPDTPHASE (chi-square 15.51, p = .030), but not QTDT (chi-square = 2.07, p = .560). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chronic myeloid leukemia (CML) is treated effectively with tyrosine kinase inhibitors (TKIs); however, 2 key problems remain-the insensitivity of CML stem and progenitor cells to TKIs and the emergence of TKI-resistant BCR-ABL mutations. BCR-ABL activity is associated with increased proteasome activity and proteasome inhibitors (PIs) are cytotoxic against CML cell lines. We demonstrate that bortezomib is antiproliferative and induces apoptosis in chronic phase (CP) CD34(+) CML cells at clinically achievable concentrations. We also show that bortezomib targets primitive CML cells, with effects on CD34(+)38(-), long-term culture-initiating (LTC-IC) and nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells. Bortezomib is not selective for CML cells and induces apoptosis in normal CD34(+)38(-) cells. The effects against CML cells are seen when bortezomib is used alone and in combination with dasatinib. Bortezomib causes proteasome but not BCR-ABL inhibition and is also effective in inhibiting proteasome activity and inducing apoptosis in cell lines expressing BCR-ABL mutations, including T315I. By targeting both TKI-insensitive stem and progenitor cells and TKI-resistant BCR-ABL mutations, we believe that bortezomib offers a potential therapeutic option in CML. Because of known toxicities, including myelosuppression, the likely initial clinical application of bortezomib in CML would be in resistant and advanced disease. (Blood. 2010;115:2241-2250)