945 resultados para Tumor Suppressor Protein p53 -- biosynthesis
Resumo:
Background. Ductal carcinoma in situ (DCIS) of the breast has been diagnosed increasingly since the advent of mammography. However, the natural history of these lesions remains uncertain. Ductal carcinoma in situ of the breast does not represent a single entity but a heterogeneous group with histologic and clinical differences. The histologic subtype of DCIS seems to have an influence on its biologic behavior, but there are few studies correlating subtype with biologic markers.Methods. The authors studied a consecutive series of 40 cases of DCIS and after its histologic categorization verified its relationship with ploidy using image analysis and analyzing estrogen receptor (ER), progesterone receptor (PR), p53 and c-erbB-2 expression using immunohistochemistry.Results. The three groups proposed according to the grade of malignancy were correlated significantly with some of the additional parameters studied, including aneuploidy and c-erB-2 expression. Aneuploidy was detected in 77.5% of cases of DCIS mainly in high and intermediate grade subtypes (100% and 80% vs. 35.7% in low grade) whereas immunoreactivity for c-erbB-2 was detected in 45% of cases of DCIS mainly in the high grade group. Expression of ER and PR were observed frequently in this study (63.9% and 65.7% respectively), but without correlation with the histologic subtype of DCIS, although we found a somewhat significant association between high grade DCIS and lack of ER. p53 protein expression was detected in 36.8% of these cases, but no relationship between this expression and histologic subtype or grading of DCIS was found.Conclusions. These results provide further evidence for the morphologic and biologic heterogeneity of DCIS. Besides histologic classification and nuclear grading, some biologic markers such as aneuploidy and c-erbB-2 expression constitute additional criteria of high grade of malignancy.
Resumo:
Immunohistochemical analysis of the p53 gene protein and cytometric assessment of nuclear DNA were performed in a series of 51 cases of intraductal breast proliferation. The series included 22 cases of intraductal hyperplasia without atypia, 6 cases of intraductal hyperplasia with atypia, and 23 cases of pure intraductal carcinoma. Expression of p53 protein was detected in one case of intraductal hyperplasia without atypia (4.5 per cent), one case of intraductal hyperplasia with atypia (16.6 per cent) and six cases of intraductal carcinoma (26.0 per cent). No significant correlation was observed between p53 expression and histological subtype of intraductal carcinoma. Aneuploidy was demonstrated in two cases of intraductal hyperplasia with atypia (33.3 per cent) and in 18 cases of intraductal carcinoma (78.2 per cent). All cases of intraductal hyperplasia without atypia were euploid. No significant association was observed between p53 protein expression and ploidy in intraductal hyperplasia. The only case of intraductal hyperplasia without atypia positive for p53 was euploid, whereas the only p53-positive case of intraductal hyperplasia with atypia was aneuploid. Among the intraductal carcinomas, only the aneuploid cases showed positivity for p53, regardless of histological subtype. The results suggest that some of the changes observed in invasive breast carcinoma, such as p53 expression and aneuploidy, are already present in breast intraductal proliferation, especially in areas with atypia and in intraductal carcinoma. The expression of p53 in breast intraductal proliferation may reflect the acquisition of p53 gene mutations in cells unable adequately to repair DNA damage, with genomic instability which would lead to clonal expansion and putative evolution to invasive disease.
Resumo:
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)