951 resultados para Transition metal-free
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.
Resumo:
Background Although individuals vulnerable to psychosis show brain volumetric abnormalities, structural alterations underlying different probabilities for later transition are unknown. The present study addresses this issue by means of voxel-based morphometry (VBM). Method We investigated grey matter volume (GMV) abnormalities by comparing four neuroleptic-free groups: individuals with first episode of psychosis (FEP) and with at-risk mental state (ARMS), with either long-term (ARMS-LT) or short-term ARMS (ARMS-ST), compared to the healthy control (HC) group. Using three-dimensional (3D) magnetic resonance imaging (MRI), we examined 16 FEP, 31 ARMS, clinically followed up for on average 3 months (ARMS-ST, n=18) and 4.5 years (ARMS-LT, n=13), and 19 HC. Results The ARMS-ST group showed less GMV in the right and left insula compared to the ARMS-LT (Cohen's d 1.67) and FEP groups (Cohen's d 1.81) respectively. These GMV differences were correlated positively with global functioning in the whole ARMS group. Insular alterations were associated with negative symptomatology in the whole ARMS group, and also with hallucinations in the ARMS-ST and ARMS-LT subgroups. We found a significant effect of previous antipsychotic medication use on GMV abnormalities in the FEP group. Conclusions GMV abnormalities in subjects at high clinical risk for psychosis are associated with negative and positive psychotic symptoms, and global functioning. Alterations in the right insula are associated with a higher risk for transition to psychosis, and thus may be related to different transition probabilities.
Resumo:
Recently nanoscale junctions consisting of 0-D nanostructures (single molecule) or 1-D nanostructures (semiconducting nanowire) sandwiched between two metal electrodes are successfully fabricated and characterized. What lacks in the recent developments is the understanding of the mechanism behind the observed phenomena at the level of atoms and electrons. For example, the origin of observed switching effect in a semiconducting nanowire due to the influence of an external gate bias is not yet understood at the electronic structure level. On the same context, different experimental groups have reported different signs in tunneling magneto-resistance for the same organic spin valve structure, which has baffled researchers working in this field. In this thesis, we present the answers to some of these subtle questions by investigating the charge and spin transport in different nanoscale junctions. A parameter-free, single particle Green’s function approach in conjunction with a posteriori density functional theory (DFT) involving a hybrid orbital dependent functional is used to calculate the tunneling current in the coherent transport limit. The effect of spin polarization is explicitly incorporated to investigate spin transport in a nanoscale junction. Through the electron transport studies in PbS nanowire junction, a new orbital controlled mechanism behind the switching of the current is proposed. It can explain the switching behavior, not only in PbS nanowire, but in other lead-chalcogenide nanowires as well. Beside this, the electronic structure properties of this nanowire are studied using periodic DFT. The quantum confinement effect was investigated by calculating the bandgap of PbS nanowires with different diameters. Subsequently, we explain an observed semiconducting to metallic phase transition of this nanowire by calculating the bandgap of the nanowire under uniform radial strain. The compressive radial strain on the nanowire was found to be responsible for the metallic to semiconducting phase transition. Apart from studying one dimensional nanostructure, we also present transport properties in zero dimensional single molecular junctions. We proposed a new codoping approach in a single molecular carborane junction, where a cation and an anion are simultaneously doped to find the role of a single atom in the device. The main purpose was to build a molecular junction where a single atom can dictate the flow of electrons in a circuit. Recent observations of both positive and negative sign in tunneling magnetoresistance (TMR) the using same organic spin-valve structure hasmystified researchers. From our spin dependent transport studies in a prototypical organic molecular tunneling device, we found that a 3% change in metal-molecule interfacial distance can alter the sign of TMR. Changing the interfacial distance by 3%, the number of participating eigenstates as well as their orbital characteristic changes for anti-parallel configuration of the magnetization at the two electrodes, leading to the sign reversal of the TMR. Apart from this, the magnetic proximity effect under applied bias is investigated quantitatively, which can be used to understand the observed unexpectedmagnetismin carbon basedmaterials when they are in close proximity with magnetic substrates.
Resumo:
The Earth's bow shock is very efficient in accelerating ions out of the incident solar wind distribution to high energies (≈ 200 keV/e). Fluxes of energetic ions accelerated at the quasi-parallel bow shock, also known as diffuse ions, are best represented by exponential spectra in energy/charge, which require additional assumptions to be incorporated into these model spectra. One of these assumptions is a so-called "free escape boundary" along the interplanetary magnetic field into the upstream direction. Locations along the IBEX orbit are ideally suited for in situ measurements to investigate the existence of an upstream free escape boundary for bow shock accelerated ions. In this study we use 2 years of ion measurements from the background monitor on the IBEX spacecraft, supported by ACE solar wind observations. The IBEX Background Monitor is sensitive to protons > 14 keV, which includes the energy of the maximum flux for diffuse ions. With increasing distance from the bow shock along the interplanetary magnetic field, the count rates for diffuse ions stay constant for ions streaming away from the bow shock, while count rates for diffuse ions streaming toward the shock gradually decrease from a maximum value to ~1/e at distances of about 10 RE to 14 RE. These observations of a gradual decrease support the transition to a free escape continuum for ions of energy >14 keV at distances from 10 RE to 14 RE from the bow shock.
Resumo:
Here, we present sedimentological, trace metal, and molecular evidence for tracking bottom water redox-state conditions during the past 12,500 years in nowadays sulfidic and meromictic Lake Cadagno (Switzerland). A 10.5 m long sediment core from the lake covering the Holocene period was investigated for concentration variations of the trace metals Mn and Mo (XRF core scanning and ICP-MS measurements), and for the presence of anoxygenic phototrophic sulfur bacteria (carotenoid pigment analysis and 16S rDNA real time PCR). Our trace metal analysis documents an oxic-intermediate-sulfidic redox-transition period beginning shortly after the lake formation similar to 12.5 kyr ago. The oxic period is characterized by low sedimentary Mn and Mo concentrations, as well as by the absence of any remnants of anoxygenic phototrophic sulfur bacteria. Enhanced accumulation/preservation of Mn (up to 5.6 wt%) in the sediments indicates an intermediate, Mn-enriched oxygenation state with fluctuating redox conditions during a similar to 2300-year long transition interval between similar to 12.1 and 9.8 kyr BP. We propose that the high Mn concentrations are the result of enhanced Mn2+ leaching from the sediments during reducing conditions and subsequent rapid precipitation of Mn-(oxyhydr) oxide minerals during episodic and short-term water-column mixing events mainly due to flood-induced underflows. At 9800 +/- 130 cal yr BP, a rapid transition to fully sulfidic conditions is indicated by the marked enrichment of Mo in the sediments (up to 490 ppm), accompanied by an abrupt drop in Mn concentrations and the increase of molecular biomarkers that indicate the presence of anoxygenic photosynthetic bacteria in the water column. Persistently high Mo concentrations >80 ppm provide evidence that sulfidic conditions prevailed thereafter until modern times, without any lasting hypolimnetic ventilation and reoxygenation. Hence, Lake Cadagno with its persistently stable chemocline offers a framework to study in great temporal detail over similar to 12 kyr the development of phototrophic sulfur bacteria communities and redox processes in a sulfidic environment, possibly depicting analogous conditions in an ancient ocean. Our study underscores the value of combining sedimentological, geochemical, and microbiological approaches to characterize paleo-environmental and -redox conditions in lacustrine and marine settings.
Resumo:
A large π-conjugated chromophore composed of two dipyrido[3,2-a:2′,3′-c]phenazine units directly fused to the central tetrathiafulvalene core has been prepared as a bridging ligand and its strong binding ability to Ru2+ to form a new dinuclear complex is presented. The electronic absorption and luminescence spectra and the electrochemical behavior of the free ligand and the Ru2+ complex have been investigated in detail. The free ligand shows a very strong band in the UV region consistent with ligand-centered π–π* transitions and an intense broad band in the visible region that corresponds to an intramolecular charge-transfer (ILCT) transition. Upon coordination, a metal-to-ligand charge-transfer band appears at 22520 cm−1, and the ILCT band is bathochromically shifted by 1620 cm−1. These electrochemically amphoteric chromophores have also been characterized by spectro-electrochemical methods. The oxidized radical species of the free ligand show a strong tendency to undergo aggregation, in which long-distance attractive interactions overcome the electrostatic repulsion. Moreover, these two new chromophores reveal an ILCT fluorescence with large solvent-dependent Stokes shifts and quantum efficiencies of 0.052 for the free ligand and 0.016 for its dinuclear Ru2+ complex in CH2Cl2.
Resumo:
The optical and luminescence properties of CaI2 and NaCl doped with divalent thulium are reported for solar energy applications. These halides strongly absorb solar light from the UV up to 900 nm due to the intense Tm2+ 4f13→4f125d1 electronic transitions. Absorption is followed by emission of 1140 nm light due to the 2F5/2→2F7/2 transition of the 4f13 configuration that can be efficiently converted to electric power by thin film CuInSe2 (CIS) solar cells. Because of a negligible spectral overlap between absorption and emission spectra, a luminescent solar concentrator (LSC) based on these black luminescent materials would not suffer from self-absorption losses. The Tm2+ doped halides may therefore lead to efficient semi-transparent power generating windows that absorb solar light over the whole visible spectrum. It will be shown that the power efficiency of the Tm2+ based LSCs can be up to four times higher compared to LSCs based on organic dyes or quantum dots.
Resumo:
Two types of deep-sea dredges are currently under development for the mining of the manganese nodules, a deep-sea hydraulic dredge and a mechanical cable-bucket system. Both systems offer some advantages with the hydraulic system appearing to be advantageous in themining of a specific deposit for which it is designed while the cable-bucket system appears to be somewhat more flexible in working in a variety of deposits, topographic environments, and water depths. Environmental studies conducted in conjunction with deep-sea tests of the two types of mining systems currently indicate that substantially no environmental damage will be done in the mining of the deep-sea nodules. Because of the nature of the deposits and the way in which they can be mined, the manganese nodules appear to be a relatively pollution free and energy-saving source of a number of industrially important metals.
Resumo:
About 34 million years ago, Earth's climate shifted from a relatively ice-free world to one with glacial conditions on Antarctica characterized by substantial ice sheets. How Earth's temperature changed during this climate transition remains poorly understood, and evidence for Northern Hemisphere polar ice is controversial. Here, we report proxy records of sea surface temperatures from multiple ocean localities and show that the high-latitude temperature decrease was substantial and heterogeneous. High-latitude (45 degrees to 70 degrees in both hemispheres) temperatures before the climate transition were ~20°C and cooled an average of ~5°C. Our results, combined with ocean and ice-sheet model simulations and benthic oxygen isotope records, indicate that Northern Hemisphere glaciation was not required to accommodate the magnitude of continental ice growth during this time.
Resumo:
Distribution of Fe, Mn, P, Ti, Cu, Ni, Co, V, Cr, W, Mo, and As in the surface sediment layer on the section from the Hawaiian Islands to the coast of Mexico (Mexico section) is studied. Contents of all studied elements increase from biogenic-terrigenous sediments off the coast of Mexico to pelagic red clays of the Northeast Basin, and more sharply for mobile elements - Mn, Mo, Cu, Ni, Co, and As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basaltic composition with high contents of Ti, Fe, V, Cr, W, and P, contents of these elements increase sharply, and contents of Mn, Mo, Ni, Co, and Cu for the same reason decrease sharply in comparison with red clay. Abnormally high contents of Mn, Mo, Cu, Ni, Co, and As in the upper layer of hemipelagic and transition sediments of the Mexico section result from diagenetic redistribution and their accumulation on the surface. Processes of diagenetic redistribution in hemipelagic and transition sediment mass of the Mexico section are more rapid than in similar sediments of the Japan section due lower sedimentation rates and higher initial concentrations of Mn. Basic similarity of element distribution regularities in sediments of Japan and Mexico sections is shown.
Resumo:
Under the process of transition toward a market economy, the economic connections of the Russian Far East (RFE) with external regions changed from a division of labor among the regions of the USSR (Russia) to an international division of labor. This happened due to factors including the liberalization of the trade system away from a state monopoly, the presence of rich natural resources and of developed industries related to these resources, the advantage of geographically proximity to Asia-Pacific countries, and the political and economic division of the once unified national economic space during the process of transition. The economic connections of RFE with external economies changed radically under the transition toward the market economy. First, the value of foreign trade increased dramatically and the importance of foreign trade for the RFE economy increased enormously. Second, however, different territories of RFE traveled along different trajectories, due to factors involving their industrial structure and geographical conditions. Third, in recent years connections with China, in the areas of both exports and imports, have grown. Fourth, the share within exports of "fuel, mineral resources and metal" increased radically from the end of the 1990s, and the share of "machine, facilities and transportation means" increased from 2002 year within imports. Under this situation, especially since 2002, there has been a major change in the structure of foreign trade.
Resumo:
The application of liquid metal technology in fusion devices requires R&D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed.
Resumo:
Coupled device and process silumation tools, collectively known as technology computer-aided design (TCAD), have been used in the integrated circuit industry for over 30 years. These tools allow researchers to quickly converge on optimized devide designs and manufacturing processes with minimal experimental expenditures. The PV industry has been slower to adopt these tools, but is quickly developing competency in using them. This paper introduces a predictive defect engineering paradigm and simulation tool, while demonstrating its effectiveness at increasing the performance and throughput of current industrial processes. the impurity-to-efficiency (I2E) simulator is a coupled process and device simulation tool that links wafer material purity, processing parameters and cell desigh to device performance. The tool has been validated with experimental data and used successfully with partners in industry. The simulator has also been deployed in a free web-accessible applet, which is available for use by the industrial and academic communities.