963 resultados para Traffic Flow Regimes
Resumo:
In this paper, we perform a societal and economic risk assessment for debris flows at the regional scale, for lower Valtellina, Northern Italy. We apply a simple empirical debris-flow model, FLOW-R, which couples a probabilistic flow routing algorithm with an energy line approach, providing the relative probability of transit, and the maximum kinetic energy, for each cell. By assessing a vulnerability to people and to other exposed elements (buildings, public facilities, crops, woods, communication lines), and their economic value, we calculated the expected annual losses both in terms of lives (societal risk) and goods (direct economic risk). For societal risk assessment, we distinguish for the day and night scenarios. The distribution of people at different moments of the day was considered, accounting for the occupational and recreational activities, to provide a more realistic assessment of risk. Market studies were performed in order to assess a realistic economic value to goods, structures, and lifelines. As terrain unit, a 20 m x 20 m cell was used, in accordance with data availability and the spatial resolution requested for a risk assessment at this scale. Societal risk the whole area amounts to 1.98 and 4.22 deaths/year for the day and the night scenarios, respectively, with a maximum of 0.013 deaths/year/cell. Economic risk for goods amounts to 1,760,291 ?/year, with a maximum of 13,814 ?/year/cell.
Resumo:
The influence of public policy, property rights and contracts on the sustainability of residential buildings remains largely unknown. This research will use the analytical framework of the housing institutional regime to study the sustainability over time of the housing stock. We aim to produce an inventory of the housing institutional regime in Switzerland, a comparison with the German and Catalan regimes, and policy suggestions to achieve a better sustainability of the housing stock.
Resumo:
Rb-82cardiac PET has been used to non-invasively assess myocardial blood flow (MBF)and myocardial flow reserve (MFR). The impact of MBF and MFR for predictingmajor adverse cardiovascular events (MACE) has not been investigated in aprospective study, which was our aim. MATERIAL AND METHODS: In total, 280patients (65±10y, 36% women) with known or suspected CAD were prospectivelyenrolled. They all underwent both a rest and adenosine stress Rb-82 cardiacPET/CT. Dynamic acquisitions were processed with the FlowQuant 2.1.3 softwareand analyzed semi-quantitatively (SSS, SDS) and quantitatively (MBF, MFR) andreported using the 17-segment AHA model. Patients were stratified based on SDS,stress MBF and MFR and allocated into tertiles. For each group, annualizedevent rates were computed by dividing the number of annualized MACE (cardiacdeath, myocardial infarction, revascularisation or hospitalisation forcardiac-related event) by the sum of individual follow-up periods in years.Outcome were analysed for each group using Kaplan-Meier event-free survivalcurves and compared using the log-rank test. Multivariate analysis wasperformed in a stepwise fashion using Cox proportional hazards regressionmodels (p<0.05 for model inclusion). RESULTS: In a median follow-up of 256days (range 168-440d), 44 MACE were observed. Ischemia (SDS≥2) was observed in95 patients who had higher annualized MACE rate as compared to those without(55% vs. 9.8%, p<0.0001). The group with the lowest MFR tertile (MFR<1.76)had higher MACE rate than the two highest tertiles (51% vs. 9% and 14%,p<0.0001). Similarly, the group with the lowest stress MBF tertile(MBF<1.78mL/min/g) had the highest annualized MACE rate (41% vs. 26% and 6%,p=0.0002). On multivariate analysis, the addition of MFR or stress MBF to SDSsignificantly increased the global χ2 (from 56 to 60, p=0.04; and from56 to 63, p=0.01). The best prognostic power was obtained in a model combiningSDS (p<0.001) and stress MBF (p=0.01). Interestingly, the integration ofstress MBF enhanced risk stratification even in absence of ischemia.CONCLUSIONS: Quantification of MBF or MFR in Rb-82 cardiac PET/CT providesindependent and incremental prognostic information over semi-quantitativeassessment with SDS and is of value for risk stratification.
Resumo:
Exposure to fine particles and noise has been linked to cardiovascular diseases and elevated cardiovascular mortality affecting the worldwide population. Residence and/or work in proximity to emission sources as for example road traffic leads to an elevated exposure and a higher risk for adverse health effects. Highway maintenance workers spend most of their work time in traffic and are exposed regularly to particles and noise. The aims of this thesis were to provide a better understanding of the workers' mixed exposure to particles and noise and to assess cardiopulmonary short term health effects in relation to this exposure. Exposure and health data were collected in collaboration with 8 maintenance centers of the Swiss Road Maintenance Services located in the cantons Bern, Fribourg and Vaud in western Switzerland. Repeated measurements with 18 subjects were conducted during 50 non-consecutive work shifts between Mai 2010 and February 2012, equally distributed over all seasons. In the first part of this thesis we tested and validated measurements of ultrafine particles with a miniature diffusion size classifier (miniDiSC) - a novel particle counting device that was used for the exposure assessment during highway maintenance work. We found that particle numbers and average particle size measured by the miniDiSC were highly correlated with data from the P-TRAK, a condensation particle counter (CPC), as well as from a scanning mobility particle sizer (SMPS). However, the miniDiSC measured significantly more particles than the P-TRAK and significantly less than the SMPS in its full size range. Our data suggests that the instrument specific cutoffs were the main reason for the different particle counts. The first main objective of this thesis was to investigate the exposure of highway maintenance workers to air pollutants and noise, in relation to the different maintenance activities. We have seen that the workers are regularly exposed to high particle and noise levels. This was a consequence of close proximity to highway traffic and the use of motorized working equipment such as brush cutters, chain saws, generators and pneumatic hammers during which the highest exposure levels occurred. Although exposure to air pollutants were not critical if compared to occupational exposure limits, the elevated exposure to particles and noise may lead to a higher risk for cardiovascular diseases in this worker population. The second main objective was to investigate cardiopulmonary short-term health effects in relation to the particle and noise exposure during highway maintenance work. We observed a PM2.5 related increase of the acute-phase inflammation markers C-reactive protein and serum amyloid A and a decrease of TNFa. Heart rate variability increased as a consequence of particle as well as noise exposure. Increased high frequency power indicated a stronger parasympathetic influence on the heart. Elevated noise levels during recreational time, after work, were related to increased blood pressure. Our data confirmed that highway maintenance workers are exposed to elevated levels of particles and noise as compared to the average population. This exposure poses a cardiovascular health risk and it is therefore important to make efforts to better protect the workers health. The use of cleaner machines during maintenance work would be a major step to improve the workers' situation. Furthermore, regulatory policies with the aim of reducing combustion and non-combustion emissions from road traffic are important for the protection of workers in traffic environments and the entire population.
Resumo:
A first assessment of debris flow susceptibility at a large scale was performed along the National Road N7, Argentina. Numerous catchments are prone to debris flows and likely to endanger the road-users. A 1:50,000 susceptibility map was created. The use of a DEM (grid 30 m) associated to three complementary criteria (slope, contributing area, curvature) allowed the identification of potential source areas. The debris flow spreading was estimated using a process- and GISbased model (Flow-R) based on basic probabilistic and energy calculations. The best-fit values for the coefficient of friction and the mass-to-drag ratio of the PCM model were found to be ? = 0.02 and M/D = 180 and the resulting propagation on one of the calibration site was validated using the Coulomb friction model. The results are realistic and will be useful to determine which areas need to be prioritized for detailed studies.
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
Perfusion CT studies of regional cerebral blood flow (rCBF), involving sequential acquisition of cerebral CT sections during IV contrast material administration, have classically been reported to be achieved at 120 kVp. We hypothesized that using 80 kVp should result in the same image quality while significantly lowering the patient's radiation dose, and we evaluated this assumption. In five patients undergoing cerebral CT survey, one section level was imaged at 120 kVp and 80 kVp, before and after IV administration of iodinated contrast material. These four cerebral CT sections obtained in each patient were analyzed with special interest to contrast, noise, and radiation dose. Contrast enhancement at 80 kVp is significantly increased (P < .001), as well as contrast between gray matter and white matter after contrast enhancement (P < .001). Mean noise at 80 kVp is not statistically different (P = .042). Finally, performance of perfusion CT studies at 80 kVp, keeping mAs constant, lowers the radiation dose by a factor of 2.8. We, thus, conclude that 80 kVp acquisition of perfusion CT studies of rCBF will result in increased contrast enhancement and should improve rCBF analysis, with a reduced patient's irradiation.
Resumo:
PURPOSE: To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM). METHODS: In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with (13)N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation. RESULTS: There was neither a relationship between carotid IMT and CAC (r = 0.10, p = 0.32) nor between carotid IMT and coronary circulatory function in response to CPT and during ADO (r = -0.18, p = 0.25 and r = 0.10, p = 0.54, respectively). In 33 individuals, EBT detected CAC with a mean Agatston-derived calcium score of 44 +/- 18. There was a significant difference in regional MBFs between territories with and without CAC at rest and during ADO-stimulated hyperemia (0.69 +/- 0.24 vs. 0.74 +/- 0.23 and 1.82 +/- 0.50 vs. 1.95 +/- 0.51 ml/g/min; p < or = 0.05, respectively) and also during CPT in DM but less pronounced (0.81 +/- 0.24 vs. 0.83 +/- 0.23 ml/g/min; p = ns). The increase in CAC was paralleled with a progressive regional decrease in resting as well as in CPT- and ADO-related MBFs (r = -0.36, p < or = 0.014; r = -0.46, p < or = 0.007; and r = -0.33, p < or = 0.041, respectively). CONCLUSIONS: The absence of any correlation between carotid IMT and coronary circulatory function in type 2 DM suggests different features and stages of early atherosclerosis in the peripheral and coronary circulation. PET-measured MBF heterogeneity at rest and during vasomotor stress may reflect downstream fluid dynamic effects of coronary artery disease (CAD)-related early structural alterations of the arterial wall.
Resumo:
Les maladies cardiovasculaires restent la cause de mortalité la plus élevée dans le monde occidental. Il s'agit d'un processus long et complexe, dont l'infarctus du myocarde et la mort cardiaque ne sont que la fin d'un spectrum. La perfusion myocardique joue un rôle central dans l'évolution de la maladie et survient chronologiquement en amont de la dysfonction diastolique et systolique, ainsi que de l'infarctus du myocarde. Une meilleure compréhension de la Physiopathologie sous-jacente est cruciale dans le diagnostique et la prise en charge du patient. Dans ce sens, ce travail tente d'évaluer l'apport de l'évaluation de la perfusion myocardique évaluée par la tomographic à émission de positron (PET/CT) quant à la prédiction d'événements cardiovasculaires. De plus, l'apport de l'évaluation quantitative par rapport à l'évaluation qualitative a été démontré dans ce travail. Nous avons utilisé un radiotraceur unique au regard de ses caractéristiques. En effet, Le Rubidium-82 est un traceur qui ne nécessite pas d'un cyclotron pour sa fabrication, dès lors qu'il est produit par un générateur, rendant ainsi sa disponibilité un atout et un avantage potentiel lors de futurs implémentations à plus grande échelle. Ce travail démontre la supériorité de l'analyse de perfusion myocardique quantitative par rapport à l'analyse traditionnelle qualitative, ce qui n'était pas encore confirmé avec le Rubidium-82. Les résultats montrent une démarcation significative entre les différentes valeurs de perfusion quantitative/absolue, permettant de distinguer différentes populations plus ou moins à risque en terme de prédiction d'événements cardiaques futurs. Il est intéressant de noter que dans un modèle combinant l'analyse qualitative et quantitative proposé dans ce travail, l'inclusion des résultats les plus ischémiques obtenus par l'analyse qualitative avec les résultats de perfusion les plus bas en terme de flux myocardique absolu (analyse quantitative) démarque une population à très bas risque d'événements cardiovasculaires majeurs, une prédiction pouvant être observée surplus de 1'000 jours. Ces résultats forment un ajout significatif quant à l'évaluation de la perfusion myocardique par la médecine nucléaire, notamment par ce model intégratif proposé, lequel permet une prédiction précise et contributive dans le cadre de futurs événements cardiovasculaires majeurs.
Resumo:
Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.
Resumo:
Several airline consolidation events have recently been completed both in Europe and in the United States. The model we develop considers two airlines operating hub-and-spoke networks, using different hubs to connect the same spoke airports. We assume the airlines to be vertically differentiated, which allows us to distinguish between primary and secondary hubs. We conclude that this differentiation in air services becomes more accentuated after consolidation, with an increased number of flights being channeled through the primary hub. However, congestion can act as a brake on the concentration of flight frequency in the primary hub following consolidation. Our empirical application involves an analysis of Delta s network following its merger with Northwest. We find evidence consistent with an increase in the importance of Delta s primary hubs at the expense of its secondary airports. We also find some evidence suggesting that the carrier chooses to divert traffic away from those hub airports that were more prone to delays prior to the merger, in particular New York s JFK airport. Keywords: primary hub; secondary hub; airport congestion; airline consolidation; airline networks JEL Classi fication Numbers: D43; L13; L40; L93; R4
Resumo:
BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Resumo:
Introduction: According to guidelines, patients with coronary artery disease (CAD) should undergo revascularization if myocardial ischemia is present. While coronary angiography (CXA) allows the morphological assessment of CAD, the fractional flow reserve (FFR) has proved to be a complementary invasive test to assess the functional significance of CAD, i.e. to detect ischemia. Perfusion Cardiac Magnetic Resonance (CMR) has turned out to be a robust non-invasive technique to assess myocardial ischemia. The objective: is to compare the cost-effectiveness ratio - defined as the costs per patient correctly diagnosed - of two algorithms used to diagnose hemodynamically significant CAD in relation to the pretest likelihood of CAD: 1) aCMRto assess ischemia before referring positive patients to CXA (CMR + CXA), 2) a CXA in all patients combined with a FFR test in patients with angiographically positive stenoses (CXA + FFR). Methods: The costs, evaluated from the health care system perspective in the Swiss, German, the United Kingdom (UK) and the United States (US) contexts, included public prices of the different tests considered as outpatient procedures, complications' costs and costs induced by diagnosis errors (false negative). The effectiveness criterion wasthe ability to accurately identify apatient with significantCAD.Test performancesused in the model were based on the clinical literature. Using a mathematical model, we compared the cost-effectiveness ratio for both algorithms for hypothetical patient cohorts with different pretest likelihood of CAD. Results: The cost-effectiveness ratio decreased hyperbolically with increasing pretest likelihood of CAD for both strategies. CMR + CXA and CXA + FFR were equally costeffective at a pretest likelihood of CAD of 62% in Switzerland, 67% in Germany, 83% in the UK and 84% in the US with costs of CHF 5'794, Euros 1'472, £ 2'685 and $ 2'126 per patient correctly diagnosed. Below these thresholds, CMR + CXA showed lower costs per patient correctly diagnosed than CXA + FFR. Implications for the health care system/professionals/patients/society These results facilitate decision making for the clinical use of new generations of imaging procedures to detect ischemia. They show to what extent the cost-effectiveness to diagnose CAD depends on the prevalence of the disease.