956 resultados para Trace Metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hyperthermal hydrogen/deuterium atom beam source with a defined energy distribution has been employed to investigate the kinetically induced electron emission from noble metal surfaces. A monotonous increase in the emission yield was found for energies between 15 and 200 eV. This, along with an observed isotope effect, is described in terms of a model based on Boltzmann type electron energy distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews some practical aspects of the application of algal biomass for the biosorption of heavy metals from wastewater. The ability of different algal species to remove metals varies with algal group and morphology, with the speciation of specific metals and their competition with others in wastewater, and with environmental or process factors. The scattered literature on the uptake of heavy metals by both living and dead algal biomass - both macroalgae and immobilized microalgae - has been reviewed, and the uptake capacity and efficiency of different species, as well as what is known about the mechanisms of biosorption, are presented. Data on metal uptake have commonly been fitted to equilibrium models, such as the Langmuir and Freundlich isotherm models, and the parameters of these models permit the uptake capacity of different algal species under different process conditions to be compared. Higher uptake capacities have been found for brown algae than for red and green algae. Kelps and fucoids are the most important groups of algae used for biosorption of heavy metals, probably because of their abundant cell wall polysacchrides and extracellular polymers. Another important practical aspect is the possibility of re-using algal biomass in several adsorption/desorption cycles (up to 10 have been used with Sargassum spp), and the influence of morphology and environmental conditions on the re-usability of algal tissue is also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroanalytical quantification of chloride in [C(4)mim][BF4], [C(4)mim][NTf2] and [C(4)mim][PF6] ionic liquids has been explored using linear sweep and square wave voltammetry. Cathodic stripping voltammetry at a silver disk electrode is found to be the most sensitive. The methodology is based on first holding the potential of the electrode at +2.0 V (vs Ag wire), to accumulate silver chloride at the electrode. On applying a cathodic scan, a stripping wave is observed corresponding to the reduction of the silver chloride. This stripping protocol was found to detect ppb levels of chloride in [C(4)mim][BF4], [C(4)mim][NTf2], and [C(4)mim][PF6]. Although other methods for chloride have been reported for [BF4](-)- and [PF6](-)-based ionic liquids, no methods have been reported for [NTf2](-) ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory calculations are used to study the stability of molecularly adsorbed CO and CN over transition metal surfaces. The minimum energy reaction pathways, corresponding reaction barriers (E-a), and reaction enthalpies (Delta H) for the dissociation of CO and CN to atomic products over the 4d transition metals from Zr to Pd have been determined. CO is found to be the more stable adsorbate on the right hand side of the period (from Tc onwards), whereas CN is the more stable surface species on the early metals (Zr, Nb and Mo). A single linear relationship is found to exist that correlates the barriers of both reactions with their respective reaction enthalpies. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB; treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n/a

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n/a

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: