999 resultados para Topological classification
Resumo:
In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.
Resumo:
After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.
Resumo:
The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are studied. Using exact diagonalization of small systems, we compute the energies and number of edge excitations, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the state identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An experimental way of detecting these correlated states is also discussed.
Resumo:
The magnetic-field dependence of the magnetization of cylinders, disks, and spheres of pure type-I superconducting lead was investigated by means of isothermal measurements of first magnetization curves and hysteresis cycles. Depending on the geometry of the sample and the direction and intensity of the applied magnetic field, the intermediate state exhibits different irreversible features that become particularly highlighted in minor hysteresis cycles. The irreversibility is noticeably observed in cylinders and disks only when the magnetic field is parallel to the axis of revolution and is very subtle in spheres. When the magnetic field decreases from the normal state, the irreversibility appears at a temperature-dependent value whose distance to the thermodynamic critical field depends on the sample geometry. The irreversible features in the disks are altered when they are submitted to an annealing process. These results agree well with very recent high-resolution magneto-optical experiments in similar materials that were interpreted in terms of transitions between different topological structures for the flux configuration in the intermediate state. A discussion of the relative role of geometrical barriers for flux entry and exit and pinning effects as responsible for the magnetic irreversibility is given.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora
Resumo:
Underwater target localization and tracking attracts tremendous research interest due to various impediments to the estimation task caused by the noisy ocean environment. This thesis envisages the implementation of a prototype automated system for underwater target localization, tracking and classification using passive listening buoy systems and target identification techniques. An autonomous three buoy system has been developed and field trials have been conducted successfully. Inaccuracies in the localization results, due to changes in the environmental parameters, measurement errors and theoretical approximations are refined using the Kalman filter approach. Simulation studies have been conducted for the tracking of targets with different scenarios even under maneuvering situations. This system can as well be used for classifying the unknown targets by extracting the features of the noise emanations from the targets.
Resumo:
Suffix separation plays a vital role in improving the quality of training in the Statistical Machine Translation from English into Malayalam. The morphological richness and the agglutinative nature of Malayalam make it necessary to retrieve the root word from its inflected form in the training process. The suffix separation process accomplishes this task by scrutinizing the Malayalam words and by applying sandhi rules. In this paper, various handcrafted rules designed for the suffix separation process in the English Malayalam SMT are presented. A classification of these rules is done based on the Malayalam syllable preceding the suffix in the inflected form of the word (check_letter). The suffixes beginning with the vowel sounds like ആല, ഉെെ, ഇല etc are mainly considered in this process. By examining the check_letter in a word, the suffix separation rules can be directly applied to extract the root words. The quick look up table provided in this paper can be used as a guideline in implementing suffix separation in Malayalam language
Resumo:
The aim of this study is to show the importance of two classification techniques, viz. decision tree and clustering, in prediction of learning disabilities (LD) of school-age children. LDs affect about 10 percent of all children enrolled in schools. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Decision trees and clustering are powerful and popular tools used for classification and prediction in Data mining. Different rules extracted from the decision tree are used for prediction of learning disabilities. Clustering is the assignment of a set of observations into subsets, called clusters, which are useful in finding the different signs and symptoms (attributes) present in the LD affected child. In this paper, J48 algorithm is used for constructing the decision tree and K-means algorithm is used for creating the clusters. By applying these classification techniques, LD in any child can be identified
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576