982 resultados para Titration
Resumo:
Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.
Resumo:
Stable Cl isotope ratios, measured in marine pore waters associated with the Barbados and Nankai subduction zones, extend significantly (to ~-8 per mil) the range of d37Cl values reported for natural waters. These relatively large negative values, together with geologic and chemical evidence from Barbados and Nankai and recent laboratory data showing that hydrous silicate minerals (i.e., those with structural OH sites) are enriched up to 7.5 per mil in 37Cl relative to seawater, strongly suggest that the isotopic composition of Cl in pore waters from subduction zones reflects diagenetic and metamorphic dehydration and transformation reactions. These reactions involve clays and/or other hydrous silicate phases at depth in the fluid source regions. Chlorine therefore cannot be considered geochemically conservative in these systems. The uptake of Cl by hydrous phases provides a mechanism by which Cl can be cycled into the mantle through subduction zones. Thus, stable Cl isotopes should help in determining the extent to which Cl and companion excess volatiles like H2O and CO2 cycle between the crust and mantle.
Resumo:
Seafloor recycling of organic materials in Santa Monica Basin, California was examined through in situ benthic chamber experiments, shipboard whole-core incubations and pore water studies. Mass balance calculations indicate that the data are internally consistent and that the estimated benthic exchange rates compare well with those derived from deep, moored conical sediment traps and hydrographic modeling. Pore water and benthic flux observations indicate that the metabolizable organic matter at the seafloor must be composed of at least two fractions of very different reactivities. While the majority of reactive organic compounds degrade quickly, with a half-life of <=6.5 years, 1/4 of the total metabolizable organic matter appears to react more slowly, with a half-life on the order of 1700 years. Down-core changes in pore water sulfate and titration alkalinity are not explained by stoichiometric models of organic matter diagenesis and suggest that reactions not considered previously must be influencing the pore water concentrations. Measured recycling and burial rates indicate that 43% of the organic carbon reaching the basin seafloor is permanently buried. The results for Santa Monica Basin are compared to those reported for other California Borderland Basins that differ in sedimentation rate and bottom water oxygen content. Organic carbon burial rates for the Borderland Basins are strongly correlated with total organic carbon deposition rate and bulk sedimentation rate. No significant correlation is observed between carbon burial and bottom water oxygen, extent of oxic mineralization and sediment mixing. Thus, for the California Borderlands, it appears that carbon burial rates are primarily controlled by input rates and not by variations in preservation.