993 resultados para Tissue graft
Resumo:
The defensive skin secretions of amphibians are a rich source of bioactive peptides. Here we describe a rapid technique for skin granular gland transcriptome cloning from a surrogate tissue-the secretion itself. cDNA libraries were constructed from lyophilized skin secretion from each of the Chinese frogs (Rana schmackeri, Rana versabilis, and Rana plancyi fukienensis) using magnetic oligo(dT) bead-captured polyadenylated mRNA as templates. Specific esculentin cDNAs were amplified by 3'-RACE using a degenerate primer designed for a consensus nucleotide sequence in the 5' untranslated region of previously characterized ranid frog peptide cDNAs. The cloned cDNAs were found to encode the antimicrobial peptides esculentins 1 and 2 from each of the species examined. The presence of predicted peptide structures in skin secretions was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This experimental approach can thus rapidly expedite parallel transcriptome and peptidome analysis of amphibian granular gland secretions without harming or sacrificing donor animals.
Resumo:
Abstract: Raman spectroscopy has been used for the first time to predict the FA composition of unextracted adipose tissue of pork, beef, lamb, and chicken. It was found that the bulk unsaturation parameters could be predicted successfully [R-2 = 0.97, root mean square error of prediction (RMSEP) = 4.6% of 4 sigma], with cis unsaturation, which accounted for the majority of the unsaturation, giving similar correlations. The combined abundance of all measured PUFA (>= 2 double bonds per chain) was also well predicted with R-2 = 0.97 and RMSEP = 4.0% of 4 sigma. Trans unsaturation was not as well modeled (R-2 = 0.52, RMSEP = 18% of 4 sigma); this reduced prediction ability can be attributed to the low levels of trans FA found in adipose tissue (0.035 times the cis unsaturation level). For the individual FA, the average partial least squares (PLS) regression coefficient of the 18 most abundant FA (relative abundances ranging from 0.1 to 38.6% of the total FA content) was R-2 = 0.73; the average RMSEP = 11.9% of 4 sigma. Regression coefficients and prediction errors for the five most abundant FA were all better than the average value (in some cases as low as RMSEP = 4.7% of 4 sigma). Cross-correlation between the abundances of the minor FA and more abundant acids could be determined by principal component analysis methods, and the resulting groups of correlated compounds were also well-predicted using PLS. The accuracy of the prediction of individual FA was at least as good as other spectroscopic methods, and the extremely straightforward sampling method meant that very rapid analysis of samples at ambient temperature was easily achieved. This work shows that Raman profiling of hundreds of samples per day is easily achievable with an automated sampling system.
Resumo:
There is currently a need to expand the range of graft materials available to orthopaedic surgeons. This study investigated the effect of ternary phosphate based glass (PBG) compositions on the behaviour of osteoblast and osteoblast-like cells. PBGs of the formula in mol% P2O5 (50)-CaO (50-X)-Na2O (X), where X was either 2, 4, 6, 8 or 10 were produced and their influence on the proliferation, differentiation and death in vitro of adult human bone marrow stromal cells (hBMSCs) and human fetal osteoblast 1.19 (HFOB 1.19) cells were assessed. Tissue culture plastic (TCP) and hydroxyapatite (HA) were used as controls. Exposure to PBGs in culture inhibited cell adhesion, proliferation and increased cell death in both cell types studied. There was no significant difference in %cell death between the PBGs which was significantly greater than the controls. However, compared to other PBGs, a greater number of cells was found on the 48 mol% CaO which may have been due to either increased adherence, proliferation or both. This composition was capable of supporting osteogenic proliferation and early differentiation and supports the notion that chemical modification of the glass could to lead to a more biologically compatible substrate with the potential to support osteogenic grafting. Realisation of this potential should lead to the development of novel grafting strategies for the treatment of problematic bone defects.