935 resultados para Tissue culture
Resumo:
This study explores organizational capability and culture change through a project developing an assurance of learning program in a business school. In order to compete internationally for high quality faculty, students, strategic partnerships and research collaborations it is essential for Universities to develop and maintain an international focus and a quality produce that predicts excellence in the student experience and graduate outcomes that meet industry needs. Developing, marketing and delivering that quality product requires an organizational strategy to which all members of the organization contribute and adhere. Now, the ability to acquire, share and utilize knowledge has become a critical organizational capability in academia as well as other industries. Traditionally the functional approach to business school structures and disparate nature of the social networks and work contact limit the sharing of knowledge between academics working in different disciplines. In this project a community of practice program was established to include academics in the development of an embedded assurance of learning program affecting more than 5000 undergraduate students and 250 academics from nine different disciplines across four schools. The primary outcome from the fully developed and implemented assurance of learning program was the five year accreditation of the business schools programs by two international accrediting bodies, EQUIS and AACSB. However this study explores a different outcome, namely the change in organizational culture and individual capabilities as academics worked together in teaching and learning teams. This study uses a survey and interviews with academics involved, through a retrospective panel design which contained an experimental group and a control group. Results offer insights into communities of practice as a means of addressing organizational capability and changes in organizational culture. Knowledge management and shared learning can achieve strategic and operational benefits equally within academia as within other industrial enterprises but it comes at a cost. Traditional structures, academics that act like individual contractors and deep divides across research, teaching and service interest served a different master and required fewer resources. Collaborative structures; fewer master categories of discrete knowledge areas; specific strategic goals; greater links between academics and industry; and the means to share learned insights will require a different approach to resourcing both the individual and the team.
Resumo:
This study demonstrates the feasibility of additive manufactured poly(3-caprolactone)/silanized tricalcium phosphate (PCL/TCP(Si)) scaffolds coated with carbonated hydroxyapatite (CHA)-gelatin composite for bone tissue engineering. In order to reinforce PCL/TCP scaffolds to match the mechanical properties of cancellous bone, TCP has been modified with 3-glycidoxypropyl trimethoxysilane (GPTMS) and incorporated into PCL to synthesize a PCL/TCP(Si) composite. The successful modification is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Additive manufactured PCL/TCP(Si) scaffolds have been fabricated using a screw extrusion system (SES). Compression testing demonstrates that both the compressive modulus and compressive yield strength of the developed PCL/TCP(Si) scaffolds fall within the lower ranges of mechanical properties for cancellous bone, with a compressive modulus and compressive yield strength of 6.0 times and 2.3 times of those of PCL/TCP scaffolds, respectively. To enhance the osteoconductive property of the developed PCL/TCP(Si) scaffolds, a CHA-gelatin composite has been coated onto the scaffolds via a biomimetic co-precipitation process, which is verified by using scanning electron microscopy (SEM) and XPS. Confocal laser microscopy and SEM images reveal a most uniform distribution of porcine bone marrow stromal cells (BMSCs) and cellsheet accumulation on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds. The proliferation rate of BMSCs on the CHA-gelatin composite coated PCL/TCP(Si) scaffolds is 2.0 and 1.4 times higher compared to PCL/TCP(Si) and CHA coated PCL/TCP(Si) scaffolds, respectively, by day 10. Furthermore, the reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses reveal that CHA-gelatin composite coated PCL/TCP(Si) scaffolds stimulate osteogenic differentiation of BMSCs the most compared to the other scaffolds. In vitro results of SEM, confocal microscopy and proliferation rate also show that there is no detrimental effect of GPTMS modification on biocompatibility of the scaffolds.
Resumo:
Safety culture in the construction industry is a growing research area. The unique nature of construction industry works – being project-based, varying in size and focus, and relying on a highly transient subcontractor workforce – means that safety culture initiatives cannot be easily translated from other industries. This paper reports on the first study in a three year collaborative industry and university research project focusing on safety culture practices and development in one of Australia’s largest global construction organisations. The first round of a modified Delphi method is reported, and describes the insights gained from 41 safety leaders’ perceptions and understandings of safety culture within the organisation. In-depth, semi-structured interviews were conducted, and will be followed by a quantitative perception survey with the same sample. Participants included Senior Executives, Corporate Managers, Project Managers, Safety Managers and Site Supervisors. Leaders’ definitions and descriptions of safety culture were primarily action-oriented and some confusion was evident due to the sometimes implicit nature of culture in organisations. Leadership was identified as a key factor for positive safety culture in the organisation, and there was an emphasis on leaders demonstrating commitment to safety, and being visible to the project-based workforce. Barriers to safety culture improvement were also identified, with managers raising diverse issues such as the transient subcontractor workforce and the challenge of maintaining safety as a priority in the absence of safety incidents, under high production pressures. This research is unique in that it derived safety culture descriptions from key stakeholders within the organisation, as opposed to imposing traditional conceptualisations of safety culture that are not customised for the organisation or the construction industry more broadly. This study forms the foundation for integrating safety culture theory and practice in the construction industry, and will be extended upon in future studies within the research program.
Resumo:
Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
These three interventions, given over a three day period in 2010, concern the proposed multifunctional exhibition hall in Gwanju, Korea. The three interventions cover some theoretical and historical issues, but also consider the practical aspects of such a project.
Resumo:
In this chapter I look at some issues around the transfer of cultural industry policy between two very different national contexts, the UK and Russia. Specifically it draws on a partnership project between Manchester and St. Petersburg financed by the European Union as part of a program to promote economic development through knowledge transfer between Europe and the countries of the former Soviet Union. This specific project attempted to place the cultural industries squarely within the dimension of economic development, and drew on the expertise of Manchester’s Creative Industries Development Service and other partners to effect this policy transfer
Resumo:
This report was commissioned by the Yorkshire Cultural Observatory and the Yorkshire & Humber Key Cities group. It is not a strategy document but an attempt to give an overview of the current thinking within academia and policy-making about the cultural agenda for regions and regional cities in the UK. In particular it looks at the challenges for Yorkshire cities in the context of the current and potential regional cultural offer. The report is a snapshot of current academic and policy thinking, but it also draws on a series of interviews conducted with policymakers in the five key cities as well as regional agencies. These interviews were limited in number and are not meant to be a comprehensive consultation exercise. Rather they acted to focus some of the issues raised by the literature and policy review and to develop suggestions around priority areas for the region.