968 resultados para Tissue Inhibitor Of Matrix Metalloproteinases
Resumo:
Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.
Resumo:
Aim Matrix metalloproteinases (MMPs) play a key role in the tissue destruction characteristic of chronic periodontitis. The purpose of this study was to investigate the association of MMP and TIMP polymorphisms with chronic periodontitis in two populations. Material and Methods A total of 34 polymorphisms spanning 12 MMP and 2 TIMP genes were genotyped in 401 individuals from Brazil (99 cases with chronic periodontitis and 302 controls), and 274 individuals from the US (70 cases and 204 controls). Individuals were considered cases if presenting at least three teeth exhibiting sites of clinical attachment loss =5 mm in two different quadrants. Controls were characterized by absence of clinical attachment loss and no sites with probing depth >3 mm. MMP3 and TIMP1 mRNA expression was evaluated in healthy and diseased periodontal tissues. Results TIMP1 showed association with chronic periodontitis in the Brazilian population (for rs5906435, p = 0.0004), whereas MMP3 showed association in the US population (for rs679620, p = 0.0003; and rs650108, p = 0.002) and in the Brazilian population (for rs639752, p = 0.005). MMP3 and TIMP1 mRNA expression was significantly higher in diseased tissues when compared to control tissues. Conclusions Our results further support a role for variations in MMP3 in chronic periodontitis and report a novel association with TIMP1. These genes may be considered additional candidate genes for chronic periodontitis.
Resumo:
Prosthetic meshes are commonly used to correct abdominal wall defects. However, the inflammatory reaction induced by these devices in the peritoneum is not completely understood. We hypothesized that nitric oxide (NO), produced by nitric oxide synthase 2 (NOS2) may modulate the response induced by mesh implants in the abdominal wall and, consequently, affect the outcome of the surgical procedure. Polypropylene meshes were implanted in the peritoneal side of the abdominal wall in wild-type and NOS2-deficient (NOS2(-/-)) mice. After 15 days tissues around the mesh implant were collected, and inflammatory markers (the cytokine interleukin 1 beta (IL-1 beta) and NO) and tissue remodeling (collagen and metalloproteinases (MMP) 2 and 9) were analyzed. The lack of NOS2-derived NO induced a higher incidence of visceral adhesions at the mesh implantation site compared with wild-type mice that underwent the same procedure (P < 0.05). Additionally, higher levels of IL-1 beta were present in the mesh-implanted NOS2(-/-) animals compared with control and wild-type mice. Mesh implantation induced collagen I and III deposition, but in smaller amounts in NOS2(-/-) mice. MMP-9 activity after the surgical procedure was similarly increased in both groups. Conversely, MMP-2 activity was unchanged in mesh-implanted wild-type mice, but was significantly increased in NOS2(-/-) mice (P < 0.01), due to decreased S-nitrosylation of the enzyme in these animals. We conclude that NOS2-derived NO is crucial for an adequate response to and integration of polypropylene mesh implants in the peritoneum. NO deficiency results in a prolonged inflammatory reaction to the mesh implant, and reduced collagen deposition may contribute to an increased incidence of visceral adhesions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases involved in the extracellular matrix degradation. MMP-2 and MMP9 are overexpressed in several human cancer types, including melanoma, thus the development of new compounds to inhibit MMPs' activity is desirable. Molecular dynamic simulation and molecular properties calculations were performed on a set of novel beta-N-biaryl ether sulfonamide-based hydroxamates, reported as MMP-2 and MMP-9 inhibitors, for providing data to develop an exploratory analysis. Thermodynamic, electronic, and steric descriptors have significantly discriminated highly active from moderately and less active inhibitors of MMP-2 whereas apparent partition coefficient at pH 1.5 was also significant for the MMP-9 data set. Compound 47 was considered an outlier in all analysis, indicating the presence of a bulky substituent group in R3 is crucial to this set of inhibitors for the establishment of molecular interactions with the S1 subsite of both enzymes, but there is a limit. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
NSAIDs are widely prescribed and used over the years to treat tendon injuries despite its well-known long-term side effects. In the last years several animal and human trials have shown that low-level laser therapy (LLLT) presents modulatory effects on inflammatory markers, however the mechanisms involved are not fully understood. The aim of this study was to evaluate the short-term effects of LLLT or sodium diclofenac treatments on biochemical markers and biomechanical properties of inflamed Achilles tendons. Wistar rats Achilles tendons (n?=?6/group) were injected with saline (control) or collagenase at peritendinous area of Achilles tendons. After 1?h animals were treated with two different doses of LLLT (810?nm, 1 and 3?J) at the sites of the injections, or with intramuscular sodium diclofenac. Regarding biochemical analyses, LLLT significantly decreased (p?<?0.05) COX-2, TNF-a, MMP-3, MMP-9, and MMP-13 gene expression, as well as prostaglandin E2 (PGE2) production when compared to collagenase group. Interestingly, diclofenac treatment only decreased PGE2 levels. Biomechanical properties were preserved in the laser-treated groups when compared to collagenase and diclofenac groups. We conclude that LLLT was able to reduce tendon inflammation and to preserve tendon resistance and elasticity. (c) 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:19451951, 2012
Resumo:
Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background The field cancerization concept in photodamaged patients suggests that the entire sun-exposed surface of the skin has an increased risk for the development of (pre)-malignant lesions, mainly epithelial tumours. Topical photodynamic therapy (PDT) is a noninvasive therapeutic method for multiple actinic keratosis (AK) with excellent outcome. Objectives To evaluate the clinical, histological and immunohistochemical changes in human skin with field cancerization after multiple sessions of PDT with methyl-aminolaevulinate (MAL). Methods Twenty-six patients with photodamaged skin and multiple AK on the face received three consecutive sessions of MAL-PDT with red light (37 J cm(-2)), 1 month apart. Biopsies before and 3 months after the last treatment session were taken from normal-appearing skin on the field-cancerized area. Immunohistochemical stainings were performed for TP-53, procollagen-I, metalloproteinase-1 (MMP-1) and tenascin-C (Tn-C). Results All 26 patients completed the study. The global score for photodamage improved considerably in all patients (P < 0.001). The AK clearance rate was 89.5% at the end of the study. Two treatment sessions were as effective as three MAL-PDT sessions. A significant decrease in atypia grade and extent of keratinocyte atypia was observed histologically (P < 0.001). Also, a significant increase in collagen deposition (P = 0.001) and improvement of solar elastosis (P = 0.002) were noticed after PDT. However, immunohistochemistry showed only a trend for decreased TP-53 expression (not significant), increased procollagen-I and MMP-1 expressions (not significant) and an increased expression of Tn-C (P = 0.024). Conclusions Clinical and histological improvement in field cancerization after multiple sessions of MAL-PDT is proven. The decrease in severity and extent of keratinocyte atypia associated with a decreased expression of TP-53 suggest a reduced carcinogenic potential of the sun-damaged area. The significant increase of new collagen deposition and the reduction of solar elastosis explain the clinical improvement of photodamaged skin.
Resumo:
Little is known about the histogenesis of the odontogenic myxoma (OM). Dental pulp stem cells could be candidate precursors of OM because both OM and the dental pulp share the same embryological origin: the dental papilla. For the purpose of comparing OM and stem cells, this study analyzed the expression of two proteins related to OM invasiveness (MMP-2 and hyaluronic acid) in human immature dental pulp stern cells (hIDPSCs). Three lineages of hIDPSCs from deciduous and permanent teeth were used in this study. Immunofluorescence revealed positive reactions for MMP-2 and hyaluronic acid (HA) in all hIDPSCs. MMP-2 appeared as dots throughout the cytoplasm, whereas HA appeared either as diffuse and irregular dots or as short fibrils throughout the cytoplasm and outside the cell bodies. The gene expression profile of each cell lineage was evaluated using RT-PCR analysis, and HA was expressed more intensively than MMP-2. HA expression was similar among the three hIDPSCs lineages, whereas MMP-2 expression was higher in DL-1 than in the other cell lines. The expression of proteins related to OM invasiveness in hIDPSCs could indicate that OM originates from dental pulp stem cells.
Resumo:
Photodynamic therapy (PDT) is a therapeutic technique mainly applied to the treatment of malignant and pre-malignant lesions, which induces cell death by the combined effect of a photosensitizer, irradiation in a proper wavelength, and molecular oxygen. One of the main limitations of PDT using 5-aminolevulinic acid (ALA) is the superficial volume of treatment, mainly due to the limited penetration of topical photosensitization. In this context, the present study investigates if a laser micromachining producing microchannels on the tissue surface could improve ALA penetration and result in an increase in the treatment depth. The laser micromachining under femtosecond regime was performed on the tissue surface of rat livers. Conventional PDT was applied and the induced depth of necrosis with or without laser micromachining was compared. The results showed an increase of more than 20% in the depth of necrosis when the femtosecond laser micromachining was performed before the treatment with the PDT.
Resumo:
Background: The hallmark of Chagas disease (CD) is multifocal myocarditis and extensive fibrosis. We investigated the potential effect of colchicine on myocardial remodeling in experimental CD. Methods and Results: One hundred Syrian hamsters were randomly divided into noninfected untreated control (CG), noninfected control treated with colchicine (COLG 0.4 mg kg(-1) d(-1) by gavage), infected (IG), and infected treated with colchicine (ICOLG, 0.4 mg kg(-1) d(-1)) groups. The interstitial collagen volume fraction (ICVF) was evaluated by videomorphometry with picrosirius red staining. The gelatinolytic activities of matrix metalloproteinase (MMP) 2 were examined with the use of zymography. Myocarditis was described according to the Dallas criteria. Statistical comparisons were performed with parametric analysis of variance and Tukey test. ICVF (%) accumulation was attenuated in infected colchicine-treated animals in the left (CG 0.81 +/- 0.13, COLG 0.85 +/- 0.13, IG: 1.35 +/- 0.31,* ICOLG 1.06 +/- 0.19; *P < .05 compared with ICOLG) and right ventricles (CG 1.4 +/- 0.36, COLG 1.26 +/- 0.14, IG 1.97 +/- 0.058,* ICOLG: 1.52 +/- 0.23; *P < .05 compared with ICOLG). A significant increase in MMP-2 enzymatic activity (UA) was observed in ICOLG (17,432.8*) compared with GC (3731.6), COLG (2,792.6), and IG (4,286.3; *P < .001). In IG, 66% of animals had myocarditis compared with only 49% in ICOLG. Conclusions: Colchicine had a protective effect on myocardium, indicated by decreased interstitial myocardial fibrosis, increased intensity of MMP-2, and attenuated myocardial inflammation. (J Cardiac Fail 2012;18:654-659)
Resumo:
OBJECTIVE: Endostatin is a potent endogenous inhibitor of angiogenesis. It is derived from the proteolytic cleavage of collagen XVIII, which is encoded by the COL18A1 gene. A polymorphic COL18A1 allele encoding the functional polymorphism p.D104N impairs the activity of endostatin, resulting in a decreased ability to inhibit angiogenesis. This polymorphism has been previously analyzed in many types of cancer and has been considered a phenotype modulator in some benign and malignant tumors. However, these data are controversial, and different results have been reported for the same tumor types, such as prostate and breast cancer. The purpose of this study was to genotype the p.D104N variant in a cohort of pediatric and adult patients with adrenocortical tumors and to determine its possible association with the biological behavior of adrenocortical tumors. METHODS: DNA samples were obtained from 38 pediatric and 56 adult patients (0.6-75 yrs) with adrenocortical tumors. The DNA samples were obtained from peripheral blood, frozen tissue or paraffin-embedded tumor blocks when blood samples or fresh frozen tissue samples were unavailable. Restriction fragment length polymorphism analysis was used to genotype the patients and 150 controls. The potential associations of the p.D104N polymorphism with clinical and histopathological features and oncologic outcome (age of onset, tumor size, malignant tumor behavior, and clinical syndrome) were analyzed. RESULTS: Both the patient group and the control group were in Hardy-Weinberg equilibrium. The frequencies of the p.D104N polymorphism in the patient group were 81.9% (DD), 15.9% (DN) and 2.2% (NN). In the controls, these frequencies were 80.6%, 17.3% and 2.0%, respectively. We did not observe any association of this variant with clinical or histopathological features or oncologic outcome in our cohort of pediatric and adult patients with adrenocortical tumors.
Resumo:
The aim of this study was to evaluate the resindentin bonds of two simplified etch-and-rinse adhesive after simulated cariogenic and inhibited cariogenic challenge in situ. Dental cavities (4 mm wide, 4 mm long, and 1.5 mm deep) were prepared in 60 bovine teeth with enamel margins. Restorations were bonded with either adhesive Adper Single Bond 2 (3MESPE) or Optibond Solo Plus (Kerr). Forty restorations were included in an intra-oral palatal appliance that was used for 10 adult volunteers while the remaining 20 dental blocks were not submitted to any cariogenic challenge [NC group] and tested immediately. For the simulated cariogenic challenge [C+DA], each volunteer dropped 20% sucrose solution onto all blocks four times a day during 14 days and distilled water twice a day. In the inhibited cariogenic challenge group [C + FA], the same procedure was done, but slurry of fluoride dentifrice (1.100 ppm) was applied instead of water. The restored bovine blocks were sectioned to obtain a slice for cross-sectional Vickers microhardness evaluation and resindentin bonded sticks (0.8 mm2) for resindentin microtensile evaluation. Data were evaluated by two-way ANOVA and Tukey's tests (a = 0.05). Statistically lower microhardness values and degradation of the resindentin bonds were only found in the C + DW group for both adhesives. The in situ model seems to be a suitable short-term methodology to investigate the degradation of the resindentin bonds under a more realistic condition. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 14661471, 2012.
Resumo:
Background/Aims: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. Methods: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. Results: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. Conclusions: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling. Copyright (C) 2011 S. Karger AG, Basel