906 resultados para Timed and Probabilistic Automata
Resumo:
The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.
The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.
We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.
Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.
Resumo:
While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.
In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.
By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.
Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.
Resumo:
From a sociocultural perspective, individuals learn best from contextualized experiences. In preservice teacher education, contextualized experiences include authentic literacy experiences, which include a real reader and writer and replicate real life communication. To be prepared to teach well, preservice teachers need to gain literacy content knowledge and possess reading maturity. The purpose of this study was to examine the effect of authentic literacy experiences as Book Buddies with Hispanic fourth graders on preservice teachers’ literacy content knowledge and reading maturity. The study was a pretest/posttest design conducted over 12 weeks. Preservice teacher participants, the focus of the study, were elementary education majors taking the third of four required reading courses in non-probabilistic convenience groups, 43 (n = 33 experimental, n = 10 comparison) Elementary Education majors. The Survey of Preservice Teachers’ Knowledge of Teaching and Technology (SPTKTT), specifically designed for preservice teachers majoring in elementary or early childhood education and the Reading Maturity Survey (RMS) were used in this study. Preservice teachers chose either the experimental or comparison group based on the opportunity to earn extra credit points (experimental = 30 points, comparison = 15). After exchanging introductory letters preservice teachers and Hispanic fourth graders each read four books. After reading each book preservice teachers wrote letters to their student asking higher order thinking questions. Preservice teachers received scanned copies of their student’s unedited letters via email which enabled them to see their student’s authentic answers and writing levels. A series of analyses of covariance were used to determine whether there were significant differences in the dependent variables between the experimental and comparison groups. This quasi-experimental study tested two hypotheses. Using the appropriate pretest scores as covariates for adjusting the posttest means of the subcategory Literacy Content Knowledge (LCK), of the SPTKTT and the RMS, the mean adjusted posttest scores from the experimental group and comparison group were compared. No significant differences were found on the LCK dependent variable using the .05 level of significance, which may be due to Type II error caused by the small sample size. Significant differences were found on RMS using the .05 level of significance.
Resumo:
The scatterometer SeaWinds on QuikSCAT provided regular measurements at Ku-band from 1999 to 2009. Although it was designed for ocean applications, it has been frequently used for the assessment of seasonal snowmelt patterns aside from other terrestrial applications such as ice cap monitoring, phenology and urban mapping. This paper discusses general data characteristics of SeaWinds and reviews relevant change detection algorithms. Depending on the complexity of the method, parameters such as long-term noise and multiple event analyses were incorporated. Temporal averaging is a commonly accepted preprocessing step with consideration of diurnal, multi-day or seasonal averages.
Resumo:
The first objective of this research was to develop closed-form and numerical probabilistic methods of analysis that can be applied to otherwise conventional methods of unreinforced and geosynthetic reinforced slopes and walls. These probabilistic methods explicitly include random variability of soil and reinforcement, spatial variability of the soil, and cross-correlation between soil input parameters on probability of failure. The quantitative impact of simultaneously considering the influence of random and/or spatial variability in soil properties in combination with cross-correlation in soil properties is investigated for the first time in the research literature. Depending on the magnitude of these statistical descriptors, margins of safety based on conventional notions of safety may be very different from margins of safety expressed in terms of probability of failure (or reliability index). The thesis work also shows that intuitive notions of margin of safety using conventional factor of safety and probability of failure can be brought into alignment when cross-correlation between soil properties is considered in a rigorous manner. The second objective of this thesis work was to develop a general closed-form solution to compute the true probability of failure (or reliability index) of a simple linear limit state function with one load term and one resistance term expressed first in general probabilistic terms and then migrated to a LRFD format for the purpose of LRFD calibration. The formulation considers contributions to probability of failure due to model type, uncertainty in bias values, bias dependencies, uncertainty in estimates of nominal values for correlated and uncorrelated load and resistance terms, and average margin of safety expressed as the operational factor of safety (OFS). Bias is defined as the ratio of measured to predicted value. Parametric analyses were carried out to show that ignoring possible correlations between random variables can lead to conservative (safe) values of resistance factor in some cases and in other cases to non-conservative (unsafe) values. Example LRFD calibrations were carried out using different load and resistance models for the pullout internal stability limit state of steel strip and geosynthetic reinforced soil walls together with matching bias data reported in the literature.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
This report addresses delays to freight shippers. Although the focus is on just-in-time (JIT) businesses, the authors also note that non JIT businesses also suffer delays that impact their productivity. The table of contents lists the following headings: chapter 1 - introduction - a trial application: the Des Moines metropolitan area; structure of the report; chapter 2 - reliability at the forefront of freight transport demand - manufacturing and inventory; just-in-time operations in the U.S.; transportation consequences; summary; chapter 3 - JIT operations in Iowa - survey and sample; trucking activity and service; just-in-time truck transportation in Iowa; assessment of factors affecting truck transportation service; summary and conclusions; chapter 4 - travel time uncertainty induced by incidents - a probabilistic model for incident occurrences and durations; calculation of delay; trial application; conclusions; and chapter 5 - conclusions and recommendations - conclusions; recommendations.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In the deregulated Power markets it is necessary to have a appropriate Transmission Pricing methodology that also takes into account “Congestion and Reliability”, in order to ensure an economically viable, equitable, and congestion free power transfer capability, with high reliability and security. This thesis presents results of research conducted on the development of a Decision Making Framework (DMF) of concepts and data analytic and modelling methods for the Reliability benefits Reflective Optimal “cost evaluation for the calculation of Transmission Cost” for composite power systems, using probabilistic methods. The methodology within the DMF devised and reported in this thesis, utilises a full AC Newton-Raphson load flow and a Monte-Carlo approach to determine, Reliability Indices which are then used for the proposed Meta-Analytical Probabilistic Approach (MAPA) for the evaluation and calculation of the Reliability benefit Reflective Optimal Transmission Cost (ROTC), of a transmission system. This DMF includes methods for transmission line embedded cost allocation among transmission transactions, accounting for line capacity-use as well as congestion costing that can be used for pricing using application of Power Transfer Distribution Factor (PTDF) as well as Bialek’s method to determine a methodology which consists of a series of methods and procedures as explained in detail in the thesis for the proposed MAPA for ROTC. The MAPA utilises the Bus Data, Generator Data, Line Data, Reliability Data and Customer Damage Function (CDF) Data for the evaluation of Congestion, Transmission and Reliability costing studies using proposed application of PTDF and other established/proven methods which are then compared, analysed and selected according to the area/state requirements and then integrated to develop ROTC. Case studies involving standard 7-Bus, IEEE 30-Bus and 146-Bus Indian utility test systems are conducted and reported throughout in the relevant sections of the dissertation. There are close correlation between results obtained through proposed application of PTDF method with the Bialek’s and different MW-Mile methods. The novel contributions of this research work are: firstly the application of PTDF method developed for determination of Transmission and Congestion costing, which are further compared with other proved methods. The viability of developed method is explained in the methodology, discussion and conclusion chapters. Secondly the development of comprehensive DMF which helps the decision makers to analyse and decide the selection of a costing approaches according to their requirements. As in the DMF all the costing approaches have been integrated to achieve ROTC. Thirdly the composite methodology for calculating ROTC has been formed into suits of algorithms and MATLAB programs for each part of the DMF, which are further described in the methodology section. Finally the dissertation concludes with suggestions for Future work.