932 resultados para Thermal treatment and chemical treatment
Resumo:
Torrefaction experiments were carried out for three typical South African biomass samples (softwood chips, hardwood chips and sweet sorghum bagasse) to a weight loss of 30wt.%. During torrefaction, moisture, non-structural carbohydrates and hemicelluloses were reduced, resulting in a structurally modified torrefaction product. There was a reduction in the average crystalline diameter (La) (XRD), an increase in the aromatic fraction and a reduction in aliphatics (substituted and unsubstituted) (CPMAS 13C NMR). The decrease in the aliphatic components of the lignocellulosic material under the torrefaction conditions also resulted in a slight ordering of the carbon lattice. The degradation of hemicelluloses and non-structural carbohydrates increased the inclusive surface area of sweet sorghum bagasse, while it did not change significantly for the woody biomasses.
Resumo:
In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.
Resumo:
Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.
Resumo:
The main objective of the project was to develop a geochemical method for exploration of ores associated with granitic rocks. Fe and Mn oxidates were sampled in streambeds and lakes from 129 localities in Southeastern Norway. 65 of these localities are situated in the northern Oslo Graben. The samples were examined mineralogically and chemically by a variety of methods. Geochemical maps of the element content in oxidates show regional distribution patterns for several elements. Sampling and analysis of oxidates can be used in exploration for mineralizations such as the Skrukkelia Mo-deposit in the northern Oslo Graben. New anomalies (especially for Zn and W) have been detected. Appendix I contains a description of samples, chemical and mineralogical determinations performed on the samples, backscattered electron image-, X-ray image- and scanning electron image pictures of the oxidate preparates. Appendix II contains spectral plots, point analysis with the microprobe, X-ray diffractograms, analytical results, correlation coefficient matrix, scatterplots, frequency distributions and information on data storage. Appendix III containS maps of the element content in oxidates.
Resumo:
The book is devoted to results of studies of Pacific sediment composition, regularities of their distribution and processes of sedimentation in the Pacific Ocean. Materials obtained by Soviet expeditions are the main part of the book.
Resumo:
Analysis of contribution of micronodules of sand and silt size to chemical composition of various types of pelagic sediments, as well as use of published data indicate that in some types of bottom sediments micronodules are the principal carriers of manganese and nickel. These elements appear to constitute smaller fractions of colloidal iron and manganese hydroxides, as well as terrigenous material.
Resumo:
We studied the grain-size, mineral and chemical compositions, physical properties, radiocarbon age, spore-pollen spectra, and diatom composition in sediments from Core PSh24-2537 sampled in the West Gotland Basin. Four lithological-stratigraphic units were distinguished: varved clays of the Baltic Ice Lake, black and black-gray (sulfide) clays of the Yoldian Sea, gray clays of Ancylus Lake, and greenish-gray sapropel-like littorine and post-littorine silts of the marine stage of Holocene. These units differ from each other both in their matter composition and in plant remains. In the littorine silts organic carbon concentra¬tion reached from 1.5 to 10.35%. Conditions of sediment accumulation and the stages of evolution of the West Gotland Basin over the post-glacial time are characterized.
Resumo:
Peer reviewed
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.
Resumo:
Processes of authigenic manganese ore formation in sediments of the North Equatorial Pacific are considered on the basis of a study of the surface layer (<2 mm) of a ferromanganese nodule and four micronodule size fractions from associated surface sediment (0-7 cm). Inhomogeneity of nodule composition is shown. Mn/Fe ratio is maximal in samples from lateral sectors of the nodule at the water-sediment interface. Compositional differences of nodules are related to preferential accumulation of trace elements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenic component trapped during nodule growth (Ga, Rb, Ba, and Cs). Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by minimal Mn/Fe values. A compositional comparison of manganese micronodules and surface layers of the nodule demonstrates that micronodule material was subjected to more intense reworking during diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe, but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are the least mobile elements during diagenesis. Differences in chemical composition of the micronodules and nodules are related not only to additional input of Mn in the process of diagenesis, but also to transformation of iron oxyhydroxides after removal of Mn from the close association with Fe formed in suspended matter during sedimentation.
Resumo:
A large manganese nodule (manganese slab) was dredged from 2100 m on the Scott Plateau by R.V. Valdivia in 1977. It is an irregular ellipsoid, with a maximum dimension of 28 cm, parallel to the sea floor. Chemical analyses show that Mn and Fe proportions are comparable, and total Ni + Cu + Co content averages 0.7%. The nodule has a complex growth history which started with radial upward growth leading to coalescing into a continuous crust. The crust was coated with horizontal layers. After fracturing and infilling of cracks with calcareous sediment, further layers encased the nodule.
Resumo:
The object of the detailed investigations was an unusual material collected in the region of the Southern Basin of the Pacific Ocean floor, with features of intense manifestation of volcanic processes and subsequent hydrothermal alterations. These processes to a significant degree transformed the ferromanganese nodules and the pelagic sediments, causing the development of a new type of oceanic manganese mineralization.