975 resultados para Ternary layers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate doxorubicin (DOX) percutaneous absorption and retention in the skin following iontophoresis. The convective flow contribution to the overall electrotransport of DOX was also elucidated for a non-ionic hyd roxyethylcellulose gel and a cationic chitosan gel. Moreover, the cytotoxicity of DOX and its formulations, with and without low electrical current, was verified. It was observed that iontophoresis of DOX significantly increased the skin permeation and retention of the drug. In addition, the electroosmotic flow was dramatically reduced when DOX was added to the non-ionic gel, thereby indicating that the drug interacted with negative charges in the skin. Interestingly, electroosmosis was also significantly reduced when the iontophoresis was performed in the presence of the chitosan gel, but in the absence of DOX. Consequently, the transport of an electroosmotic marker from this gel almost disappeared when the positively charged drug was added to the cationic gel. These results indicated that chitosan appeared to interact with negative charges in the skin. Hence, this carrier not only reduced electroosmotic flow, but also released DOX from ionic interactions with these sites and improved its diffusion to deeper skin layers. The application of the low electrical current directly to melanoma cells increased DOX cytotoxicity by nearly three-fold, which was probably due to membrane permeation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meso-tetra-[4-sulfonatophenyl]-porphyrin (TPPS(4)) is a charged porphyrin derivate used in photodynamic therapy (PDT) by parenteral administration. This study means to investigate potential enhancement for its topical delivery by determining the TPPS(4) dependence on the environmental characteristics and applying iontophoresis. In order to accomplish this task, cathodal and anodal iontophoresis as well as passive delivery of the drug were studied in vitro and in vivo in function of its concentration, pH and ionic strength. A reduction in drug concentration as well as the NaCl elimination from donor formulation at pH 2.0 increased TPPS(4) passive permeation through the skin in vitro. Iontophoresis improved TPPS(4) delivery across the skin when applied in solutions containing NaCl at pH 2.0, regardless electrode polarity. However, at pH 7.4, the amount of TPPS(4) permeated by iontophoresis was not different from that one permeated after passive experiments from a solution containing NaCl. Despite the fact that iontophoresis did not improve TPPS(4) transdermal delivery at this specific condition, in vivo experiments showed that 10 min of iontophoresis quickly and homogeneously delivered TPPS(4) to deeper skin layers when compared to passive administration, which is an important condition for topical treatment of skin tumors with PDT. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corneal structure of three deep-sea species of teleosts (Gadiformes, Teleostei) from different depths (250-4000 m) and photic zones are examined at the level of the light and electron microscopes. Each species shows a similar but complex arrangement of layers with a cornea split into dermal and scleral components. The dermal cornea comprises an epithelium overlying a basement membrane and a dermal stroma with sutures and occasional keratocytes. Nezumia aequalis is the only species to possess a Bowman's layer, although it is not well-developed. The scleral cornea is separated from the dermal cornea by a mucoid layer and, in contrast to shallow-water species, is divided into three main layers; an anterior scleral stroma, a middle or iridescent layer and a posterior scleral stroma. The iridescent layer of collagen and intercalated cells or cellular processes is bounded by a layer of cells and the posterior scleral stroma overlies a Descemet's membrane and an endothelium. In the relatively shallow-water Microgadus proximus, the keratocytes of the dermal stroma, the cells of the iridescent layer and the endothelial cells all contain aligned endoplasmic reticulum, which may elicit an iridescent reflex. No alignment of the endoplasmic reticulum was found in N. aequalis or Coryphanoides (Nematonurus) armatus. The relative differences between shallow-water and deep-sea corneas are discussed in relation to the constraints of light, depth and temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The salamanderfish, Lepidogalaxias salamandroides (Galaxiidae, Teleostei) is endemic to southwestern Australia and inhabits shallow, freshwater pools which evaporate during the hot summer months. Burrowing into the substrate in response to falling water levels allows these fish to aestivate for extended periods of time while encapsulated in a mucous cocoon even when the pools contain no water. Only a few minutes after a major rainfall, these fish emerge into relatively clear water which subsequently becomes laden with tannin, turning the water black and reducing the pH to approximately 4.3. As part of a large study of the visual adaptations of this unique species, the retinal and lenticular morphology of the aestivating salamanderfish is examined at the level of the light and electron microscopes. The inner retina is highly vascularised by a complex system of vitreal blood vessels, while the outer retina receives a blood supply by diffusion from a choriocapillaris. This increased retinal blood supply may be an adaptation for reducing the oxygen tension during critical periods of aestivation. Large numbers of Muller cells traverse the thickness of the retina from the inner to the outer limiting membranes. The ganglion cells are arranged in two ill-defined layers, separated from a thick inner nuclear layer containing two layers of horizontal cells by a soma-free inner plexiform layer. The photoreceptors can be divided into three types typical of many early actinopterygian representatives; equal double cones, small single cones and large rods (2:1:1). These photoreceptors are arranged into a unique regular square mosaic comprising a large rod bordered by four equal double cones with a small single cone located at the corner of each repeating unit. The double cones may optimise perception of mobile prey which it tracks by flexion of its head and neck and the large rods may increase sensitivity in the dark tannin-rich waters in which it lives. Each single cone also possesses a dense collection of polysomes and glycogen (a paraboloid) beneath its ellipsoid, the first such finding in teleosts. The retinal pigment epithelium possesses melanosomes, pha,oocytes and a large number of mitochondria. The anatomy of the retina and the photoreceptor mosaic is discussed in relation to the primitive phylogeny of this species and its unique life history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study on the ternary system PbO-ZnO-SiO2, in air by high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis was carried out as part of the wider research program on the six-component system PbO-ZnO-SiO2-CaO-FeO-Fe2O3, which combines experimental and thermodynamic computer modeling techniques to characterize zinc and lead industrial slags. Liquidus and solidus data were reported for all primary phase fields in the system PbO-ZnO-SiO2 in the temperature range 640 degrees C to 1400 degrees C (913 to 1673 K).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The foveal and non-foveal retinal regions of the pipefish, Corythoichthyes paxtoni (Syngnathidae, Teleostei) are examined at the level of the light and electron microscopes. The pipefish possesses a deep, pit (convexiclivate) fovea which, although lacking the displacement of the inner retinal layers as described in other vertebrate foveae, is characterised by the exclusion of rods, a marked increase in the density of photoreceptors and a regular square mosaic of four double cones surrounding a central single cone. In the perifoveal and peripheral retinal regions, the photoreceptor mosaic is disrupted by the insertion of large numbers of rods, which reduce spatial resolving power but may uniformly increase sensitivity for off-axis rays. In addition to a temporal fovea subtending the frontal binocular field, there is also a central area centralis subtending the monocular visual field. Based on morphological comparisons with other foveate teleosts, four foveal types are characterised and foveal function discussed with respect to the theoretical advantage of a regular square mosaic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of alumina on the liquidus temperatures of fayalite slags at iron saturation has been investigated experimentally. Equilibrated synthetic slags were quenched, and the samples were subsequently examined using optical microscopy and electron probe microanalysis (EPMA). The isotherms in the fayalite primary field and boundary lines were determined, and the results were presented in the form of pseudo-ternary phase diagrams of FeO-CaO-SiO2 with 0, 2, 4, and 6 wt pet Al2O3 in the slag. The experimental results show that the alumina addition expands the fayalite primary phase field and decreases the liquidus temperatures in the fayalite primary phase field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eye lenses of Parma microlepis from the rocky barrens of Sydney (New South Wales, Australia) were found to contain Ba, Hg, Rb, and Sr at concentrations above the quantitative detection limits of solution-based inductively-coupled plasma-mass spectrometry (ICP-MS). Lenses were separated into the hard central nucleus and the softer surrounding cortex. Nuclei contained lower (equal for Ba) concentrations of these metals. Biochemical analysis of the protein composition of these lenses revealed differences in the ratio of gamma-crystallin to beta-crystallin in the lens nucleus and cortex. These changes were shown to be attributable both to protein degradation and changes in protein synthesis as fish age. Such changes may lead to the loss of sequestered metals from older cell layers, or change the affinity of new layers for particular trace metals. Differential binding affinities of these crystallins may, therefore, partially account for trace-metal differences observed in the lens nucleus and cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals. [S0163-1829(99)02236-5].