942 resultados para Temporal frequency
Resumo:
Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors-phase consistency as well as amplitude covariation across trials-but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over-or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.
Resumo:
A new representation of spatio-temporal random processes is proposed in this work. In practical applications, such processes are used to model velocity fields, temperature distributions, response of vibrating systems, to name a few. Finding an efficient representation for any random process leads to encapsulation of information which makes it more convenient for a practical implementations, for instance, in a computational mechanics problem. For a single-parameter process such as spatial or temporal process, the eigenvalue decomposition of the covariance matrix leads to the well-known Karhunen-Loeve (KL) decomposition. However, for multiparameter processes such as a spatio-temporal process, the covariance function itself can be defined in multiple ways. Here the process is assumed to be measured at a finite set of spatial locations and a finite number of time instants. Then the spatial covariance matrix at different time instants are considered to define the covariance of the process. This set of square, symmetric, positive semi-definite matrices is then represented as a third-order tensor. A suitable decomposition of this tensor can identify the dominant components of the process, and these components are then used to define a closed-form representation of the process. The procedure is analogous to the KL decomposition for a single-parameter process, however, the decompositions and interpretations vary significantly. The tensor decompositions are successfully applied on (i) a heat conduction problem, (ii) a vibration problem, and (iii) a covariance function taken from the literature that was fitted to model a measured wind velocity data. It is observed that the proposed representation provides an efficient approximation to some processes. Furthermore, a comparison with KL decomposition showed that the proposed method is computationally cheaper than the KL, both in terms of computer memory and execution time.
Resumo:
The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.
Resumo:
This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information and a temporal measure named the maximum weighted inner product. For validation, several experiments are carried out on the entire TIMIT database and two of the CMU Arctic corpora. The performance of the proposed method compares well with three state-of-the-art techniques. (C) 2014 Acoustical Society of America
Resumo:
Motivated by observations of the mean state of tropical precipitable water (PW), a moist, first baroclinic mode, shallow-water system on an equatorial beta-plane with a background saturation profile that depends on latitude and longitude is studied. In the presence of a latitudinal moisture gradient, linear analysis of the non-rotating problem reveals large-scale, symmetric, eastward and westward propagating unstable modes. The introduction of a zonal moisture gradient breaks the east-west symmetry of the unstable modes. The effects of rotation are then included by numerically solving the resulting eigenvalue problem on an equatorial beta-plane. With a purely meridional moisture gradient, the system supports large-scale, low-frequency, eastward and westward moving neutral modes. Some of the similarities, and some of the discrepancies of these modes with intraseasonal tropical waves are pointed out. Finally, a zonal moisture gradient in the presence of rotation renders some of the aforementioned neutral modes unstable. In particular, according to observations of large-scale, low-frequency tropical variability, it is seen that regions where the background saturation profile increases (decreases) to the east favour eastward (westward) moving moist modes.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.
Resumo:
The temperature (300-973K) and frequency (100Hz-10MHz) response of the dielectric and impedance characteristics of 2BaO-0.5Na(2)O-2.5Nb(2)O(5)-4.5B(2)O(3) glasses and glass nanocrystal composites were studied. The dielectric constant of the glass was found to be almost independent of frequency (100Hz-10MHz) and temperature (300-600K). The temperature coefficient of dielectric constant was 8 +/- 3ppm/K in the 300-600K temperature range. The relaxation and conduction phenomena were rationalized using modulus formalism and universal AC conductivity exponential power law, respectively. The observed relaxation behavior was found to be thermally activated. The complex impedance data were fitted using the least square method. Dispersion of Barium Sodium Niobate (BNN) phase at nanoscale in a glass matrix resulted in the formation of space charge around crystal-glass interface, leading to a high value of effective dielectric constant especially for the samples heat-treated at higher temperatures. The fabricated glass nanocrystal composites exhibited P versus E hysteresis loops at room temperature and the remnant polarization (P-r) increased with the increase in crystallite size.
Resumo:
A novel algorithm for Virtual View Synthesis based on Non-Local Means Filtering is presented in this paper. Apart from using the video frames from the nearby cameras and the corresponding per-pixel depth map, this algorithm also makes use of the previously synthesized frame. Simple and efficient, the algorithm can synthesize video at any given virtual viewpoint at a faster rate. In the process, the quality of the synthesized frame is not compromised. Experimental results prove the above mentioned claim. The subjective and objective quality of the synthesized frames are comparable to the existing algorithms.
Resumo:
High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.
Resumo:
Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1-xYxMnO3, for x=0.1-0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below T-N(Mn) approximate to 80 K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x < 0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1-xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Frequent episode discovery is one of the methods used for temporal pattern discovery in sequential data. An episode is a partially ordered set of nodes with each node associated with an event type. For more than a decade, algorithms existed for episode discovery only when the associated partial order is total (serial episode) or trivial (parallel episode). Recently, the literature has seen algorithms for discovering episodes with general partial orders. In frequent pattern mining, the threshold beyond which a pattern is inferred to be interesting is typically user-defined and arbitrary. One way of addressing this issue in the pattern mining literature has been based on the framework of statistical hypothesis testing. This paper presents a method of assessing statistical significance of episode patterns with general partial orders. A method is proposed to calculate thresholds, on the non-overlapped frequency, beyond which an episode pattern would be inferred to be statistically significant. The method is first explained for the case of injective episodes with general partial orders. An injective episode is one where event-types are not allowed to repeat. Later it is pointed out how the method can be extended to the class of all episodes. The significance threshold calculations for general partial order episodes proposed here also generalize the existing significance results for serial episodes. Through simulations studies, the usefulness of these statistical thresholds in pruning uninteresting patterns is illustrated. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.
Resumo:
Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Quasigeostrophic turbulence on a beta-plane with a finite deformation radius is studied numerically, with particular emphasis on frequency and combined wavenumber-frequency domain analyses. Under suitable conditions, simulations with small-scale random forcing and large-scale drag exhibit a spontaneous formation of multiple zonal jets. The first hint of wave-like features is seen in the distribution of kinetic energy as a function of frequency; specifically, for progressively larger deformation scales, there are systematic departures in the form of isolated peaks (at progressively higher frequencies) from a power-law scaling. Concomitantly, there is an inverse flux of kinetic energy in frequency space which extends to lower frequencies for smaller deformation scales. The identification of these peaks as Rossby waves is made possible by examining the energy spectrum in frequency-zonal wavenumber and frequency-meridional wavenumber diagrams. In fact, the modified Rhines scale turns out to be a useful measure of the dominant meridional wavenumber of the modulating Rossby waves; once this is fixed, apart from a spectral peak at the origin (the steady jet), almost all the energy is contained in westward propagating disturbances that follow the theoretical Rossby dispersion relation. Quite consistently, noting that the zonal scale of the modulating waves is restricted to the first few wavenumbers, the energy spectrum is almost entirely contained within the corresponding Rossby dispersion curves on a frequency-meridional wavenumber diagram. Cases when jets do not form are also considered; once again, there is a hint of Rossby wave activity, though the spectral peaks are quite muted. Further, the kinetic energy scaling in frequency domain follows a -5/3 power-law and is distributed much more broadly in frequency-wavenumber diagrams. (C) 2015 AIP Publishing LLC.