972 resultados para Telescope space debris satellite spectroscopy tracking photometry NASA ASI
Resumo:
We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is fat, worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK
Resumo:
New organic/inorganic (O/I) hybrid assemblies based on Layered Double Hydroxide (LDH) with polyamide amine dendrimer (PAMAM, generation -0.5 and generation +0.5) were prepared by two different routes using either the direct coprecipitation at constant pH or the anion exchange procedure in double surfactant S(+)S(-) phases. The obtained materials were characterized by means of powder X-ray diffraction, thermal gravimetric analysis associated with mass spectrometry, and Fourier-transform infrared spectroscopy. X-ray powder diffraction pattern of the O/I LDH assembly exhibit characteristic profiles of LDH-based materials with basal spacing depending on the nature of the dendrimer. Indeed, for both synthetic procedures, interleaved PAMAM -0.5 gives rise to an interlayer space in agreement with a perpendicular molecular arrangement against the layer of the host structure. For PAMAM+0.5, considering its spherical dimension, a much smaller basal spacing was observed. This observation was interpreted as shrinkage of the molecule to accommodate the interlayer LDH gap, which was rendered possible by the bond angle twisting within PAMAM-0.5. FTIR spectra confirm the presence of both moieties inside both Zn(2)Al/PAMAM G-0.5 and Zn(2)Al/PAMAM G+0.5 assemblies. Finally, thermal analysis associated with mass spectrometry confirm this composition, and in situ temperature XRD data reveal that the highly constrained arrangement for the generation +0.5 is not accompanied by a gain in thermal structural stability; in fact, the assembly prepared from PAMAM -0.5 is more stable. Both O/I PAMAM LDH assemblies constitute well-defined materials which are candidate for catalytic applications.
Resumo:
In situ and ex situ studies concerning the new hybrid material vanadium pentoxide xerogel in the presence of the cationic surfactant cetyl pyridinium chloride (V(2)O(5)/CPC) are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V(2)O(5)/CPC hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the infrared bands toward lower energy levels. Electrochemical studies comprising the cyclic voltammetry and the electrochemical impedance spectroscopy techniques showed that the behavior of the hybrid material is considerably influenced by the electrolyte composition. The ion insertion/de-insertion into the V(2)O(5) xerogel structure accompanying the charge transfer process is influenced by the solid-state diffusion process modeled by using the finite-space Warburg element.
Resumo:
The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.
Resumo:
Many peptides containing tryptophan have therapeutic uses and can be studied by their fluorescent properties. The biological activity of these peptides involves interactions with many cellular components and micelles can function as carriers inside organisms. We report results from the interaction of small peptides containing tryptophan with several microheterogeneous systems: sodium dodecyl sulphate (SDS) micelles; sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates; and neutral polymeric micelles. We observed that specific parameters, such as wavelength of maximum emission and fluorescence anisotropy, could be used to ascertain the occurrence of interactions. Affinity constants were determined from changes in the intensity of emission while structural modifications in rotameric conformations were verified from time-resolved measurements. Information about the location and diffusion of peptides in the microheterogeneous systems were obtained from tryptophan emission quenching experiments using N-alkylpyridinium ions. The results show the importance of electrostatic and hydrophobic effects, and of the ionization state of charged residues, in the presence of anionic and amphiphilic SDS in the microheterogeneous systems. Conformational stability of peptides is best preserved in the interaction with the neutral polymeric micelles. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
This study investigated the organic and inorganic constituents of healthy leaves and Candidatus Liberibacter asiaticus (CLas)-inoculated leaves of citrus plants. The bacteria CLas are one of the causal agents of citrus greening (or Huanglongbing) and its effect on citrus leaves was investigated using laser-induced breakdown spectroscopy (LIBS) combined with chemometrics. The information obtained from the LIBS spectra profiles with chemometrics analysis was promising for the construction of predictive models to identify healthy and infected plants. The major, macro- and microconstituents were relevant for differentiation of the sample conditions. The models were then applied to different inoculation times (from 1 to 8 months). The models were effective in the classification of 82-97% of the diseased samples with a 95% significance level. The novelty of this method was in the fingerprinting of healthy and diseased plants based on their organic and inorganic contents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Constructing a veridical spatial map by touch poses at least two problems for a perceptual system. First, as the hand is moved through space, the locations of features may be displaced if there is an uncorrected lag between the moment the hand encounters a feature and the time that feature is encoded on a spatial map. Second, due to the sequential nature of the process, some form of memory, which itself may be subject to spatial distortions, is required for integration of spatial samples. We investigated these issues using a task involving active haptic exploration with a stylus swept back and forth in the horizontal plane at the wrist. Remembered locations of tactile targets were shifted towards the medial axis of the forearm, suggesting a central tendency in haptic spatial memory, while evidence for a displacement of perceived locations in the direction of sweep motion was consistent with processing delays.
Resumo:
CTX is a rare lipid-storage disease. Novel MRS findings from 3 patients, using a short TE, were the presence of lipid peaks at 0.9 and 1.3 ppm in the depth of the cerebellar hemisphere; this might represent an additional marker of disease that is CNS-specific and noninvasive. A decrease in NAA concentration was also detected and attributed to neuroaxonal damage. One patient presented an increase in mlns concentration, pointing to gliosis and astrocytic proliferation.
Resumo:
The settling characteristics of cell debris and inclusion bodies prior to, and following, fractionation in a disc-stack centrifuge were measured using Cumulative Sedimentation Analysis (CSA) and Centrifugal Disc photosedimentation (CDS). The impact of centrifuge feedrate and repeated homogenisation on both cell debris and inclusion body collection efficiency was investigated. Increasing the normalised centrifuge feedrate (Q/Sigma) from 1.32 x 10(-9) m s(-1) to 3.97 x 10(-9) m s(-1) leads to a 36% increase in inclusion body paste purity. Purity may also be improved by repeated homogenisation. Increasing the number of homogeniser passes results in smaller cell debris size whilst leaves inclusion body size unaltered. At a normalised centrifuge feedrate of 2.65 x 10(-9) m s(-1), increasing the number of homogeniser passes from two (2) to ten (10) improved overall inclusion body paste purity by 58%. Grade-efficiency curves for both the cell debris and inclusion bodies have also been generated in this study. The data are described using an equation developed by Mannweiler (1989) with parameters of k = 0.15-0.26 and n = 2.5-2.6 for inclusion bodies, and k = 0.12-0.14 and n = 2.0-2.2 for cell debris. This is the first accurate experimentally-determined grade efficiency curve for cell debris. Previous studies have simply estimated debris grade efficiency curves using an approximate debris size distribution and grade efficiency curves determined with 'ideal particles' (e.g. spherical PVA particles). The findings of this study may be used to simulate and optimise the centrifugal fractionation of inclusion bodies from cell debris.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
The synthesis, spectroscopy, and electrochemistry of the acyclic tertiary tetraamine copper(II) complex [CuL(1)](ClO4)(2) (L(1) = N,N-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine) is reported. The X-ray crystal structure of [CuL(1)(OClO3)(2)] reveals a tetragonally elongated CuN4O2 coordination sphere, exhibiting relatively long Cu-N bond lengths for a Cu-II tetraamine, and a small tetrahedral distortion of the CuN4 plane. The [CuL(1)](2+) ion displays a single, reversible, one-electron reduction at -0.06 V vs Ag/AgCl. The results presented herein illustrate the inherent difficulties associated with the separation and characterization of Cu-II complexes of tertiary tetraamines, and some previously incorrect assertions and unexplained observations of other workers are discussed.
Resumo:
Conducting dielectric samples are often used in high-resolution experiments at high held. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred, Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect. (C) 1997 Academic Press.
Resumo:
A new method to measure Escherichia coil cell debris size after homogenization is presented. It is based on cumulative sedimentation analysis under centrifugal force, coupled with Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of sedimented proteins. The effects that fermentation and homogenization conditions have on the resulting debris distributions were investigated using this method. Median debris size decreased significantly from approximately 0.5 mu m to 0.3 mu m as the number of homogenization passes increased from 2 to 10. Under identical homogenization conditions, uninduced host cells in stationary phase had a larger debris size than exponential cells after 5 homogenizer passes. This difference was not evident after 2 or in passes, possibly because of confounding intact cells and the existence of a minimum debris size for the conditions investigated. Recombinant cells containing protein inclusion bodies had the smallest debris size following homogenization. The method was also used to measure the size distribution of inclusion bodies. This result compared extremely well with an independent determination using centrifugal disc photosedimentation (CDS), thus validating the method. This is the first method that provides accurate size distributions of E. coli debris without the need for sample pretreatment, theoretical approximations (e.g. extinction coefficients), or the separation of debris and inclusion bodies prior to analysis. (C) 1997 John Wiley & Sons, Inc.