983 resultados para TROPICAL SOUTH-ATLANTIC
Resumo:
A prominent feature in the Southeast Atlantic is the Angola-Benguela Front (ABF), the convergence between warm tropical and cold subtropical upwelled waters. At present, the sea-surface temperature (SST) gradient across the ABF and its position are influenced by the strength of southeasterly (SE) trade winds. Here, we present a record of changes in the ABF SST gradient over the last 25 kyr. Variations in this SST contrast indicate that periods of strengthened SE trade-wind intensity occurred during the Last Glacial Maximum, the Younger Dryas, and the Mid to Late Holocene, while Heinrich Event 1, the early part of the Bølling-Allerød, and the Early Holocene were periods of weakened SE trade-winds.
Resumo:
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.
Resumo:
High-resolution, well-dated calcareous dinoflagellate cyst and organic carbon records from a 58 kyr sediment core (M35003-4) located southeast of the island of Grenada show that rapid and pronounced changes in cyst association and accumulation and organic carbon deposition occurred, controlled by (1) a significant southward shift in the position of the North Equatorial Current during the last glacial period and the Younger Dryas cold interval and (2) rapid changes in local productivity in marine isotopic stage 3 that are associated with variations in Orinoco River nutrient discharge and coastal upwelling strength. Prominent cyst accumulation peaks representing extremely oligotrophic and stratified thermocline conditions mimic the Greenland ice core and northern Atlantic Dansgaard/Oeschger stadials and Heinrich events. We provide new evidence for a coupled tropical/high-latitude Atlantic climate system during the last glacial period and suggest that changes in the zonality of the low-latitude winds may play an important role in modulating rapid interhemispheric climate variability.
Resumo:
Studies of the late Miocene-early Pliocene biogenic bloom typically have focused on high-productivity areas in the Indian and Pacific Oceans in order to achieve high resolution samples. Thus there is a paucity of information concerning whether the Atlantic Ocean, in general or low-productivity regions in all three basins experienced this bloom. This study measured the phosphorus mass accumulation rate (PMAR). in five cores from low-productivity regions of the Atlantic and Indian Oceans. All cores exhibit a peak in productivity 4-5.5 Ma, coincident with the Indo-Pacific bloom. This suggests that nutrients were not shifted away from low-productivity regions nor out of the Atlantic Ocean. Instead, it appears that the bloom was caused by an overall increase in nutrient flux into the world oceans. Four of the cores record the bloom's PMAR peak as bimodal, indicating a pulsed increase in phosphorus to the oceans. This suggests that there may have been multiple causes of the biogenic bloom.
(Table 5) Sr isotopic ratios of HH extractions and foraminifera of sediments from the Atlantic Ocean
(Table 11) Al and Nd concentrations from several HH extractions of sediments from the Atlantic Ocean
Resumo:
Investigating the inter-basin deep water exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal d13C records from the southern East Pacific Rise to characterize the d13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deep water records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial d13C variations imply a common deep water evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower d13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps AABW. During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable d13C values of both water masses.
Resumo:
Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.
Resumo:
Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.
Resumo:
Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.
Resumo:
Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.
Resumo:
Benthic foraminiferal assemblages in Mesozoic and Cenozoic sediments were studied at Sites 511, 512, 513, and 514 drilled during Leg 71 in the southwestern Atlantic on the Maurice Ewing Bank and in the Argentine Basin. Benthic foraminifers in almost all stratigraphic subdivisions of Sites 511 and 512 reflect the gradual subsidence of the Falkland Plateau from shelf depths in the Barremian-Albian, when a semiclosed basin with restricted circulation of water masses and anaerobic conditions existed, to lower bathyal depths in the Late Cretaceous and Cenozoic, with an abrupt acceleration at the boundary of Lower and Upper Cretaceous. The composition, distribution, and preservation of Late Cretaceous assemblages of benthic foraminifers suggest considerable fluctuations of the foraminiferal lysocline and the CCD. This is evidenced by dissolution facies and foraminiferal assemblages in which agglutinated and resistant calcareous forms predominated during high stands of the CCD and by calcareous facies in which rich assemblages of calcareous species predominated during low stands. The highest position of the CCD on the Plateau (less than 1500-2000 m) was in the late Cenomanian, Turonian, and Coniacian. In the Santonian and Campanian the CCD was at depths below 1500-2000 meters. At the end of the Campanian the CCD shifted again to depths comparable with those of Cenomanian and Turonian time. In the latest Campanian and the Maestrichtian the CCD was low and nanno-foraminiferal oozes with a rich assemblage of benthic foraminifers accumulated. Foraminiferal assemblages at Sites 513 and 514 in the Argentine Basin also testify to oceanic subsidence from lower bathyal depths in the Oligocene to abyssal ones at present. This process was complicated by the influence of geographical migrations of the Polar Front caused by extensions of the ice sheet in the Antarctic after the opening of the Drake Passage during the Oligocene. In Mesozoic and Cenozoic deposits of the Falkland Plateau and the Argentine Basin seven assemblages of benthic foraminifers were distinguished by age: early-middle Albian, middle-late Albian, Late Cretaceous (including four groups), middle Eocene, late Eocene-early Miocene, middle-late Miocene, and Pliocene-Quaternary. The Albian assemblages contain many species common to the foraminiferal fauna of the Austral Biogeographical Province. The Late Cretaceous assemblage contains, along with Austral species, species common to foraminifers of North America, Western Europe, the Russian platform, and the south of the U.S.S.R. Deep-sea cosmopolitan species prevail in Cenozoic assemblages.