939 resultados para TRITON X-100
Resumo:
The microstructure of YBa2Cu3O7-delta (Y-123) materials partially-melted in air and quenched from the temperature range 900-1100 degrees C, has been characterized using a combination of X-ray diffractometry, optical microscopy, scanning electron microscopy, electron microprobe analyses, transmission electron microscopy and energy and wave dispersive X-ray spectrometries. The microstructural studies reveal significant changes in the character of the quenched partial-melt as a function of temperature and time before quenching. BaCu2O2 and BaCuO2 are found to co-exist in stoichiometric samples quenched from the temperature range 920-960 degrees C. Under suitable cooling conditions, large pockets of melt cristallize as BaCuO2 with an exsolution of BaCu2O2 in the form of thin plates (approximate to 50-100 nm thick) along facets. Y2BaCuO5 (Y-211) additions are associated with the formation of BaCu2O2 at 1100 degrees C. Preliminary results on the effects of PtO2 and CeO2 additions to Y-123 (and Y-123 with Y-211 additions) show that these enhace the formation of BaCu2O2 at the melting temperature of 1100 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
YBCO wires which consist of well oriented plate-like fine grains are fabricated using a moving furnace to achieve higher mechanical strength. Melt-texturing experiments have been undertaken on YBCO wires with two different compositions: YBa1.5Cu2.9O7-x, and YBa1.8Cu3.0O7-x. Wires are extruded from a mixture of precursor powders (formed by a coprecipitation process) then textured by firing in a moving furnace. Size of secondary phases such as barium cuprate and copper oxide, and overall composition of the sample affect the orientation of the fine grains. At zero magnetic field, the YBa1.5Cu2.9O7-x wire shows the highest critical current density of 1,450 Acm-2 and 8,770 Acm-2 at 77K and 4.2K, respectively. At 1 T, critical current densities of 30 Acm-2 and 200 Acm-2, respectively, are obtained at 77K and 4.2K. Magnetisation curves are also obtained for one sample to evaluate critical current density using the Bean model. Analysis of the microstructure indicates that the starting composition of the green body significantly affects the achievement of grain alignment via melt-texturing processes.
Resumo:
Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2.
Resumo:
Sintered bars of YBa2Cu3O7-x obtained by slip-casting are investigated for drying and sintering behaviour. High J(cm) values (approximate to 10(6) A/cm(2) at 77K) are obtained, although J(ct) values are low (approximate to 10(2) A/cm(2) at 77K). Microstructural characterisation is undertaken on selected samples which demonstrate significant differences in physical density and critical current density.
Resumo:
A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994.
Resumo:
Wires of YBa2Cu3O7-x were fabricated by extrusion using a hydroxypropyl methylcellulose (HPMC) binder. As little as 2 wt.% binder was added to an oxide prepared by a novel co-precipitation process, to produce a plastic mass which readily gave continuous extrusion of long lengths of wire in a reproducible fashion. Critical temperatures of 92K were obtained for wires given optimum high-temperature heat treatments. Critical current densities greater than 1000 A cm-1 were measured at 77.3K using heat treatments at around 910°C for 10h. These transport critical current densities, measured on centimeter-long wires, were obtained with microstructures showing a relatively dense and uniform distribution of randomly oriented, small YBa2Cu3O7-x grains. © 1993.
Resumo:
Five basalt samples from the Point Sal ophiolite, California, were examined using HRTEM and AEM in order to compare observations with interpretations of XRD patterns and microprobe analyses. XRD data from ethylene-glycol-saturated samples indicate the following percentages of chlorite in mixed-layer chlorite-smectite identified for each specimen: (i) L2036 almost-equal-to 50%, (ii) L2035 almost-equal-to 70 and 20%, (iii) 1A-13 almost-equal-to 70%, (iv) 1B-42 almost-equal-to 70%, and (v) 1B-55 = 100%. Detailed electron microprobe analyses show that 'chlorite' analyses with high Si, K, Na and Ca contents are the result of interlayering with smectite-like layers. The Fe/(Fe + Mg) ratios of mixed-layer phyllosilicates from Point Sal samples are influenced by the bulk rock composition, not by the percentage of chlorite nor the structure of the phyllosilicate. Measurements of lattice-fringe images indicate that both smectite and chlorite layers are present in the Point Sal samples in abundances similar to those predicted with XRD techniques and that regular alternation of chlorite and smectite occurs at the unit-cell scale. Both 10- and 14-angstrom layers were recorded with HRTEM and interpreted to be smectite and chlorite, respectively. Regular alternation of chlorite and smectite (24-angstrom periodicity) occurs in upper lava samples L2036 and 1A-13, and lower lava sample 1B-42 for as many as seven alternations per crystallite with local layer mistakes. Sample L2035 shows disordered alternation of chlorite and smectite, with juxtaposition of smectite-like layers, suggesting that randomly interlayered chlorite (< 0.5)-smectite exists. Images of lower lava sample 1B-55 show predominantly 14-angstrom layers. Units of 24 angstrom tend to cluster in what may otherwise appear to be disordered mixtures, suggesting the existence of a corrensite end-member having thermodynamic significance.
Resumo:
Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM) with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 μm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.
Resumo:
Tourism New Zealand (TNZ) is the national tourism office responsible for coordinating international marketing of New Zealand as a tourism destination (see www.newzealand.com ). Typical of most destination marketing organisations (DMO), TNZ is funded by government to work with the private sector in an effort to improve the financial viability of the tourism industry. A competitive tourism industry can provide a number of economic and socio-cultural benefits to a community, such as increased job opportunities and lower unemployment, new amenities and attractions, and revival of indigenous culture.
Resumo:
The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.
Resumo:
A process for making aluminosilicates of zeolite N structure comprising the steps of: (i) combining a water soluble monovalent cation, a solution of hydroxyl anions and an aluminosilicate to form a resultant mixture having a pH greater than 10 and a H.sub.2O/Al.sub.2O.sub.3 ratio in the range 30 to 220; (ii) heating the resultant mixture to a temperature of between 50.degree. C. and boiling point of the mixture for a time between 1 minute and 100 hours until a crystalline product of zeolite N structure is formed as determined by X-ray diffraction or other suitable characteristic; and (iii) separating the zeolite N product as a solid from the mixture.
Resumo:
Video-based training combined with flotation tank recovery may provide an additional stimulus for improving shooting in basketball. A pre-post controlled trial was conducted to assess the effectiveness of a 3 wk intervention combining video-based training and flotation tank recovery on three-point shooting performance in elite female basketball players. Players were assigned to an experimental (n=10) and control group (n=9). A 3 wk intervention consisted of 2 x 30 min float sessions a week which included 10 min of video-based training footage, followed by a 3 wk retention phase. A total of 100 three-point shots were taken from 5 designated positions on the court at each week to assess three-point shooting performance. There was no clear difference in the mean change in the number of successful three-point shots between the groups (-3%; ±18%, mean; ±90% confidence limits). Video-based training combined with flotation recovery had little effect on three-point shooting performance.
Resumo:
Background: Ureaplasmas are the most frequently isolated microorganisms from the amniotic fluid (AF) of pregnant women and can cause chronic infections that are difficult to eradicate with standard macrolide treatment. We tested the effects of erythromycin treatment on phenotypic and genotypic markers of ureaplasmal antimicrobial resistance in sheep. Method: At 50 days of gestation (d, term=145d) 12 pregnant ewes received intra-amniotic injections of U. parvum serovar 3 (erythromycin-sensitive, 2x104 colony-forming-units). At 100d ewes received: erythromycin treatment (500 mg, q3h for 4 days, IM, n=6) or no treatment (n=6). Fetuses were delivered surgically (125d) and AF and chorioamnion were collected for: culture, minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) testing; 23S rRNA sequencing; and detection of macrolide-lincosamide-streptogramin resistance (MLSr) genes. Results: MICs of erythromycin, azithromycin and roxithromycin against AF isolates were low (range = 0.06 mg/L to 1.0 mg/L); however, chorioamnion isolates demonstrated increased resistance to roxithromycin (0.13 – 5.33 mg/L). 62.5% of chorioamnion ureaplasmas formed biofilms in vitro and mutations (125 nucleotides, 29.6%) were found in the 23S rRNA gene (domain V) of chorioamnion (but not AF) ureaplasmas. MLSr genes (ermB, msrC and msrD) were detected in 100% of chorioamnion isolates and only msrD was detected in AF isolates (40%). Conclusions: 23S rRNA mutations and MLSr genes occurred independently of erythromycin treatment, suggesting that the anatomical site of infection and microenvironment may exert selective pressures on ureaplasmas that cause genetic changes and alter antimicrobial sensitivity profiles. These results have serious implications for treatment of in utero infections.
Resumo:
In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.