930 resultados para TPM chip


Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,由于对海区不合理的开发,我国浅海贝类筏式养殖接连遭受重创,这亟需从理论上和实践中确定养殖容量和养殖模式。本文在我国北方典型养殖海湾四十里湾对筏式养殖的贝类开展了现场生理生态学研究,对贝类对浮游植物等悬浮颗粒物的处理过程即贝类对颗粒有机物及营养元素C、N、P的摄食、吸收、排泄、排粪和生长进行了剖析,分析了贝类在沿岸养殖生态系中的物质和营养循环中所扮演的角色,为海区贝类养殖容量和养殖模式的最终确定提供了基础数据。另外,本文还对海水、沉积物及生物体中磷的分析方法进行了大量的实验工作。主要结果如下:① 比较系统地评述了双壳贝类的生物沉积(biodeposition)的原理、测定方法及其生态效应。贝类通过生物沉积在沿岸生态系中的物质和营养循环中扮演着重要的角色。国际上已有不少研究专门报道了贝类在海区现场的生物沉积。而在我国,这方面的研究却罕见。② 综述了双壳贝类各种形态的 N 和 P 排泄及其生态效应。对于我国广泛养殖 的栉孔扇贝、海湾扇贝和牡蛎等双壳贝类的TDN、TP排泄尚未见报道。 ③ 在6~7月,在四十里湾的不同养殖海区(8个站位)对扇贝的生物沉积进行了现场测定。在整个四十里湾海区,一龄栉孔扇贝(壳高 41.1±4.1mm,软体干重 0.48±O.10 g/ind))每个每天所产生生物沉积物干重平均为59.9mg,对颗粒有机质(POM)、颗粒有机碳(POC)、颗粒有机氮(PON)和颗粒有机磷(POP)的生物沉积速率范围及平均值分别为: 6.88、3.09、0.392 和 0.022mg/ind·d。还在一个站位测定了海湾扇贝(壳高 24.6±2.3mm;软体干重 O.14g/ind)的生物沉积速率为 24.3mg/ind·d,或179.2mg/g·d。不同站位一龄栉孔扇贝的生物沉积速率有较大变化,这主要与饵料浓度不同有关。二龄栉孔扇贝(壳高60.9±8.2mm;软体干重1.91±0.32 g/ind)的生物沉积速率平均为 112.7mg/ind·d,对POM、POC、PON和POP的沉积速率分别是一龄扇贝的1.85倍、1.68倍、1.77倍和2.33倍。养殖海区与非养殖海区比较,前者近海底沉积速率是后者的 1.51~3.47 倍。根据以上数据,作者计算了中等规格栉孔扇贝(用壳高 41.1±4.8mm 扇贝估算)在四十里湾在夏季每天的生物沉积量达 162 吨(干重),或18.6tPOM、8.37tPOC、1.06tPON和60kgPP。在四十里湾的贝类筏式养殖海区,可以估计贝类每年因生物沉积的生产而循环427tN和98.OtP(包括20.0t OP的贡献),它们能分别满足浮游藻类生产所需求N和P的17.0%和28.3%(其中OP贡献 6.9%)。可见,贝类在养殖生态系的物质和营养盐循环中扮演着重要的角色。高密度、大面积的贝类养殖使大量的生物沉积物聚集于海底,可能对海区环境产生冲击。作者分析,98年8月份烟台养殖区赤潮的发生很可能与海底生物沉积物营养盐的快速释放以及栉孔扇贝大面积死亡而使浮游藻类失去了摄食控制有关,而风平浪静和养殖笼对水流的阻挡也为赤潮的发生提供了有利条件。④ 采用半现场流水系统法测定了栉孔扇贝在不同养殖密度、不同养殖模式(扇贝单养、贝藻混养、贝藻参混养)中的生物沉积。实验时间尺度大,前后计80天。结果说明扇贝的生物沉积速率与其养殖密度呈反比关系。养殖密度的高低影响饵料浓度的变化(两者呈负相关的对数函数关系),而饵料浓度的高低直接决定着扇贝的生物沉积速率的高低,两者呈正相关关系(生物沉积速率与POC和叶绿 a 分别呈对数和指数函数关系)。不仅生物沉积物的数量与养殖密度(或饵料浓度)有关,生物沉积物的质量同样与养殖密度(或饵料浓度)有关。栉孔扇贝的养殖使沉积物的有机质含量及C、N 和 P 含量降低,且密度越高,它们的含量越低。这反映了扇贝对环境的适应能力。在海带和扇贝的混养模式中,海带对扇贝生物沉积物的数量和质量不构成影响,当然这是在海带不影响浮游植物数量的前提下得出的结果。而实际上在自然海区两者可能是竞争关系。⑤ 对从海区取回到实验室的多种滤食性动物,包括经济双壳贝类(栉孔扇贝、海湾扇贝、长牡蛎、贻贝、菲律宾蛤仔等)和养殖中的污损动物(栖海鞘、玻璃海鞘、藤壶、玟斑稜蛤)的 N 和 P 排泄进行了测定,包括排泄成分和排泄速率。在N排泄中,NH_4-H 占主要部分,如笼式养殖的双壳贝类 NH_4-N 占总N排泄的70%以上,平均值范围为70.8~80.1%。氨基酸是第二大排泄成分,平均占总N排泄的10~25%。其它形态的N,如尿素、亚硝酸盐和硝酸盐也有检出,如双壳贝类尿素氮在总氮排泄中占 2~5%。但在双壳贝类中未检出尿酸氮。比较而言,海鞘、藤壶的尿素氮相对高一些。在P排泄中,OP约占TDP排泄的15~27%。栉孔扇贝TDP排泄速率为0.281μmol/h·ind。作者以实验室测定结果计算,在整个四十里湾的夏季,所养殖的双壳贝类每天将排泄4.54t总溶解氮,其中NH_4-N 3.36t、Amino-N 0.69t、Urea-N 0.2t。 同时每天磷的排泄为0.57t TDP,其中OP O.15t。对面积为1.3 * 10~4hm~2的海区而言,贝类的N、P排泄分别能满足浮游植物生产所需N、P的44%和40%。尽管Urea-N所占比例有限,但也能满足海区浮游植物所需 N 的 2%左右。以上说二月高密度的贝类养殖对海区生态系统营养盐循环的影响是很显著的。附着动物(柄海鞘等)的N、P 排泄也不容忽视,它们分别能满足浮游藻类生产所需 N、P 的 ll%和 12%。它们一方面通过排泄和排粪加速营养盐和物质的循环对浮游植物的生长产生刺激作用;另一方面,对藻类产生摄食控制,如果海区中滤食性动物太多,即使营养盐再丰富也难以使浮游植物大量繁殖,这无疑将影响滤食性动物的生长速率。⑥ 运用近年来发展起来的生物沉积法对四十里湾半现场流水系统中贝类的滤水率、吸收率、生长率、生态效率等生理生态学参数进行了测定。栉孔扇贝(收获时规格0.194~0.412g软体干重/ind)滤水率平均为3.65 1/ind·h。扇贝放养密度和饵料浓度没有显著关系。扇贝的总摄食率平均为3.98mg/ind·h,对POM、POC、PON的 摄食率范围为0.84~1.87、0.335~0.748、0.0515~O.1293mg/ind·h。扇贝的摄食率随放养密度的升高而降低,与POM呈正相关关系。扇贝的吸收速率受密度和饵料浓度的影响不明显。扇贝对N的吸收效率较C、P稍高,对总有机质的吸收效率为75.9±4.1%,如此高的吸收效率与低饵料浓度有关。扇贝氨基酸泄漏所损失的能量高于排氨的能量损失。代谢能与吸收能呈明显的正相关关系。SFG与饵料浓度呈正相关关系。总生长效率K1(* 100)变化较大,范围为20~49;净生长效率K,K_2(* 100)随POM的升高而升高。扇贝对N的总生态效率范围为6.2~12.8%(平均9.9%),这高于对C(平均5.9%)和P(平均4.1%)的总生态效率。扇贝对POC、PON和PP的生长余力(SFG_C、SFG_N、SFG_P)平均分别为197、46.8和6.2μg/ind·h,它们分别与POC、PON和PP呈正比关系。扇贝对N的净生长率高于对C和P的净生长率。在N的预算中,如果仅考虑NH_4-N的排泄而忽视其它形态氮的排泄,将会产生很大偏差(平均约20%)。扇贝贝壳生长所需的能量在整个扇贝生长所需能量的9.0~15.1%(平均 11.2%);贝壳C、N和P在扇贝生长中所占的比例分别为10.5~17.8%、9.4~16.1%和8.7~15.O%。可见,贝壳不管在能量预算还是在元素预算中都不应该被忽视。理论计算而得到的SFG和SFG_C、SFG_N、SFG_P与扇贝的实际生长和扇贝C、N、P的实际增长量之间呈正相关关系,但前者明显过高地估计了扇贝的生长。⑦ 运用生物沉积法在四十里湾养殖海区现场对栉孔扇贝的生理生态学特征进行了研究。不同海区扇贝的滤水率有变化,一龄扇贝(41.1±4.1mm,软体干重 0.48±O.10g/ind)滤水率变化范围为 0.72~2.54(平均 1.27)1/ind·h 或 1.65~5.97(平均 2.61)1/g·h。与半现场研究结果一致,滤水率与TPM没有明显关系,而摄食率却与TPM呈正相关关系。二龄扇贝(软体干重 1.91±0.32g/ind)滤水率为 2.09~3.99(平均 3.10)1/ind·h。吸收速率与POM(或TDM)呈正相关关系,与饵料质量(POM/TPM)无明显的相关关系。吸收效率AE_(POM)与TPM(或POM)没有相关关系,却与饵料质量呈明显 的正相关关系。扇贝对POC、PON和PP的吸收效率平均分别为68.9%、64.0%和63.6%。不同海区SFG差别很大。一龄扇贝SFG范围为-O.174~24.08 J/ind·h,SFG与饵料浓度POM呈正相关关系。SFG负值的出现主要与低饵料浓度有关。SFG_C、SFG_N、SFG_P分别与POC、PON和PP呈正相关关系。在N的生长余力计算中,如果仅考虑NH_4-N排泄,而不考虑其它形态N的排泄,就可能产生相当大的偏差,偏差范围为11~360%,这高于半现场的偏差值,显然SFG_N越低,产生的偏差就越大。这说明在饵料不足、扇贝生长受到限制的环境下进行N生长余力的计算时必须考虑其它形态N的排泄。⑧ 对四十里湾养殖海区一些双壳贝类和藻类的化学组成和有机净生产量进行了讨论。不同双壳贝类的软体有机碳含量差别不大,而N含量差异较大。栉孔扇贝N含量最高(占软体干重的12.36%),而牡蛎、毛蚶软体N含量相对较低,为 8~9%。从双壳贝类贝壳的组成来看,贻贝和菲律宾蛤仔贝壳中N含量最高,分别为 0.55% 和 0.56%;而栉孔扇贝贝壳N含量相对较低,在 O.1%左右。贻贝贝壳有机磷含量 (308ppm) 也明显高于栉孔扇贝贝壳(62.1 ppm)。不同海区海带的 C/N 比值较高,变化明显,范围为17.36~30.23。石莼与此相似。大型藻类高 C/N 比值说明海区营养元素N的不足。海带的不同部位N含量差别很大,中带部和边叶在不同海区有较大变化,即对环境的营养状况比较敏感。紫贻贝贝壳中C、H、N 和 P 的含量在整个贻贝中占有相对大的比例,分别为 30.4%、30.2%、31.8%和 29.6%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

能量代谢指动物在进行生理活动(如摄食、消化以及动物的活动等)时所消耗能量的总和,一般以动物的呼吸率利排泄率来估计动物的能量代谢。其主要研究内容是闸明生物能量代谢的基木规律以及与环境闪子的关系。菲律宾蛤仔(Ruditapesphil ippmarum)是我国一种重要的养殖贝类,关于其能量代谢的研究却较少,这种状况妨碍了菲律宾蛤仔养殖生态理论的完善和养殖技术的提高。本研究主要对菲律宾蛤仔呼吸率和排泄率的基本规律(能量代谢与体重的关系、能量代谢的昼夜变化)及其与环境因子(饵料浓度、水温、栖息底质环境)的关系进行探讨。研究结果如下:1.不同体重菲律宾蛤仔代谢率小同。实验川菲律宾蛤仔分三种大小:l(干肉重为0.07-0.14g)、ll(干肉重0.27-0.34g)、III(干肉重0.45~0.63g)。温度包括:26℃(八月)、20℃(十月)、1 5℃(十二月)、9℃(一月)。实验共设四个饵料浓度:2.28±0.25,6.454±0.44,10.284±0.82,15.414±1.56mgTPM/L(TPM,总颗粒物),饵料中POM(颗粒有机物)含量都为4.68±1.64 mg/L。常温下菲律宾蛤仔代谢率随着体重的增大而增大。15℃、20~C、26℃时蛤仔呼吸率与干肉重呈明显的幂函数关系R=aW~b,a值变动范围为0.1076-0.3309;b值变动范围为0.239l~0.8381;蛤仔排泄率与干肉重也呈明显的幂函数关系N=aW~b,a值变动范围为14.213~68.362:b值变动范围为0.3673-1.1 532。9℃(饵料浓度为2.28±0.25mgTPM/L)、20℃(饵料浓度为10.284-0.82mgTPM/L)、26℃(饵料浓度为6.454±0.44mgTPM/L)时不同体重蛤仔氧氮比差异显著,其它情况下不同体重蛤仔氧氮比差异不显著。2.常温下菲律宾蛤仔代谢率受饵料浓度的影响,不同大小蛤仔受饵料浓度的影响程度不同。I组蛤仔呼吸率受饵料浓度的显著影响,II组III组蛤仔呼吸率只在9℃(一月)和26~C(八月)时受饵料浓度的显著影响。26℃时影响最显著,26℃时I组蛤仔在饵料浓度为2.28±0.25,6.45±0.44,l0.28±0.82,15.4l±1.56mgTPM/L时呼吸率分别是O.086,0.146,0.073,0.093(mlO_2/h);ll组蛤仔在上述浓度饵料中呼吸率分别是0.138,0.214,0.J 26,0.12l(mlO_2/h);III组蛤仔在上述浓度饵料中呼吸率分别是0.129,0.266,0.186,0.192(mlO_2/h)。菲律宾蛤仔呼吸率在饵料浓度为6.45±0.44 mgTPM/L时最高,蛤仔呼吸率在其它饵料浓度时都会降低。菲律宾蛤仔排泄率在饵料浓度为10.28±0.82 mgTPM/L和15.4l士1.56mgTPM/L时显著高于其它浓度组,9℃时这种趋势更明显,9℃时饵料浓度为2.28±0.25,6.454±044,lO.284±0.82,15.41±1.56mgTPM/L中I组蛤仔排泄率分别是4.297,2.874,8.003,6.658(μgNH_3-N/h);II组蛤仔在上述浓度饵料中排泄率分别是4.011,3.609,10.427,12.732(μgNH_3-N/h);III组蛤仔在上述浓度饵料中排泄率分别是2.28 l,6.452,10.283,15.417(μgNH_3-N/h)。3.菲律宾蛤仔代谢率受自然温度的显著影Ⅱ向。I组蛤仔在9℃、15℃、20℃、26℃时呼吸率平均为0.057,0.085,0.039,O.099;II组蛤仔在上述四个温度中呼吸率平均为0.08,O.128,0.089,0.149(mlO_2/h),I组和II组蛤仔在9℃和20~C时呼吸率较低,在26℃时呼吸率最高。III组蛤仔在上述四个温度中呼吸率平均为0.09,O.1 59,O.143,O.193(mlO_2/h),在9℃时llI组蛤仔呼吸率显著低于其它温度组。温度为9℃、15℃、20℃、26℃时l组蛤仔排泄率平均为5.458,13.169,4.946,11.138(μgNH_3-N/h):II组蛤仔在上述温度中排泄率平均为7.695,23.578,8.319,23.90l(μgNH_3-N/h);III组蛤仔在上述温度中排泄率平均为11.738,27.443,15.658,35.407(μgNH_3-N/h),蛤仔排泄率在15℃和26℃时均高于9℃和20℃。4.摄食状态与饥饿状态菲律宾蛤仔代谢率有明显不同。26℃时蛤仔静止状态呼吸率平均为0.336(m102/g干重.h),摄食状态呼吸率平均为0.656(ml0_2干重.h),摄食状态呼吸率比静止状态平均升高了0 32(ml0_2/g干重.h);26℃时蛤仔静止状态排泄率平均为39.471(μgNH_3-N/g干重.h),摄食状态排泄率平均为88.08(μgNH_3-N/g干重.h),摄食状态排泄率比静止状态排泄率平均升高了48.6(μgNH_3-N/g干重.h)。摄食状态代谢率平均是静止状态的2~3倍。根据摄食引起的呼吸率和排泄率升高量得出每氧化产生lμgNH_3-N需0_2量平均为7.05μl。5.人工控制温度对菲律宾蛤仔代谢率有明显影响。不同大小蛤仔受温度的影响程度不同。在温度5℃、10℃、l 5℃、20℃、26℃,I组和II组蛤仔呼吸率都随着温度的升高而升高,在10℃~l5℃和20℃~26℃这二个温度变化范围内呼吸率变化最大,在20℃~26℃时I组蛤仔呼吸率变动范围为O.85~1.04(m10_2/g干重.h)、II组蛤仔变动范围为0.57~0.86(ml0_2/g干重.h)。III组蛤仔呼吸率只在5℃~l0℃时明显增高,变动范围为0.09~0.5l(m10_2/g干重.h),在10℃~26℃范围内变化不大。I组和II组蛤仔排泄率随着温度的升高而升高,变动幅度较大,在5℃~26℃范围内其排泄率变动范围为10.32~81.53(μgNH_3-N/g干重.h);而 III组蛤仔排泄率只在5℃~15℃时随着温度的升高而升高,其排泄率变动范围为6.75~23.77(μgNH_3-N/g干重.h),在15℃~26℃范围内几乎不变。III组蛤仔的适温范围比I组和II组蛤仔广。菲律宾蛤仔在5℃和10℃时氧氮比变化明显,变动范围为2.76~11.44,在15~26℃时变化不大。6.菲律宾蛤仔代谢率有明显的日节律性,呈正弦曲线型变化。蛤仔夜问代谢率明显升高。I组蛤仔夜间呼吸率平均为0.867(m10_2/g干重.h),白天呼吸率平均为O.504(m10_2/g干重.h);II组蛤仔夜间呼吸率平均为0.438(m10_2/g干重.h),白天呼吸率平均为0.36l(m102/g干重.h);III组蛤仔夜间呼吸率平均为0.409(m10_2/g干重.h),白天呼吸率平均为0.252(m102/g干重.h)。在22:00-23:00菲律宾蛤仔呼吸率最高。7.底质环境对菲律宾蛤仔的代谢率有明显影响。在饥饿状态下菲律宾蛤仔在泥沙底质中呼吸率平均为l 406(m10_2/g干重h),在无泥沙环境中呼吸率平均为O.963(ml0_2/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中呼吸率平均为1.59l(m102/g干重.h),在无泥沙环境中呼吸率平均为1.115(m10_2/g干重.h)。在饥饿状态下菲律宾蛤仔在泥沙底质中排泄率平均为78.934(μgNH_3-N/g 干重.h),在无泥沙环境巾排泄率平均为45.043(μgNH_3-N/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中排泄率平均为87.12l(μgNH_3-N/g干重.h),在无泥沙底质中排泄率平均为58.354(μgNH_3-N/g干重.h)。蛤仔在泥沙环境中呼吸率和排泄率都明显升高。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研发了基于CAN总线的新型机器人示教盒系统,采用ARM芯片为核心,并在其上运行了实时操作系统μC/OS-II。设计了一套CAN网络通讯协议,实现了一个示教盒同时示教多台机器人的一对多示教模式,在很大程度上改进和提高了机器人示教盒的性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文在分析几种常用的基于编码器测速方法的基础上,提出了一种高性能的自适应速度测量方法。该方法选择一个可变的时间周期和编码器脉冲数来测量单位时间内的编码器脉冲数,再通过简单的计算得到转速的测量值。数字信号处理器(DSP)芯片集成有正交脉冲编码电路,并且数据处理速度快,实时性强。本文中提出的方法在电机控制专用DSP芯片TMS320 LF2407A上进行了实现。实验研究表明,可以在提高低速时的测速准确度的同时,提高系统的响应时间。该方法已经在自主研发的全数字伺服驱动系统中得到了成功应用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文将S/T曲线速度规划的思想引入全数字伺服驱动系统中,通过提高速度的平滑性,特别是高速启、制动状态,来提高伺服系统的整体控制性能。基于定点数字信号处理器DSP芯片对提出的算法进行了实现。由于定点运算的限制,算法在实现中需要进行特殊的处理,本文对此进行了研究,并提出了一种余码补偿方案。实验研究表明,使用本文提出的方法可以提高系统运行的平稳性和控制的精确度。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了数字信号处理器 TMS32 0 L F2 4 0 7A的串行外设接口 ,给出了 EEPROM存储器 X5 165与 TMS32 0 L F2 4 0 7A的硬件连接电路和应用程序实例

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对超大规模集成电路和片上系统设计中确定异步FIFO浓度的问题,根据异步FIFO运行时的属性提出FIFO动态参数模型,该模型包括FIFO饱和度、写入端和读出端数据传输率及上溢/下溢频率。在该模型的基础之上,分析异步FIFO的深度与动态参数之间的关系,采用功能仿真方法确定片上系统中异步模块之间数据传输所需FIFO的深度。对典型实例的分析表明,采用这种方法能够在保证系统数据通信性能的前提下,获得最小的FIFO深度,优化系统资源的使用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对环境温湿度检测的需求,设计了一种点对多点的星型无线温湿度监控网络。以无线通信模块nRF401为基础,配合AT89C2051和数字温湿度传感器SHT11构建了从机,以P89C51RD2BN单片机和USB接口芯片PDIUSBD12构建了主机。对系统的硬件原理及温湿度采集方法进行了介绍,对无线通信协议及USB固件设计方法进行了较详细分析。经上位机软件测试,系统运行稳定,具有较好实用性,可应用于多种场合的无线温湿度监测。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

随着FPGA的发展,FPGA测试技术也得到了很快地发展。因为FPGA的结构和传统专用集成电路有着本质的区别,在FPGA中不能形成可测性设计电路,但它的可编程能力决定了其测试电路可以通过编程的方法来实现。本文讨论了XilinxXC4000系列FPGA中互连资源的自动测试方法。提出了一种新的测试资源坐标定位方法,使得测试软件能够将测试配置转换成器件配置,并搭建了硬件测试平台,实现实体FPGA芯片测试。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对目前在纳米器件及传感器的制造中尚无对大量粒子进行有效操纵的方法,我们利用介电泳方法对大量微粒进行定位和传输操纵,介绍了利用MEMS工艺进行介电泳芯片加工的过程以及整个观测与实验系统的建立,通过有限元软件对传统介电泳和行波介电泳中电极阵列的电场分布进行求解,并在该实验系统下实现了对微通道中的悬浮高度和微粒的运动速度的测量.该实验系统的研究为液体环境下微纳颗粒的装配和分离提供了一条有效的技术路径.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了16位80C196KC单片机的独特性能.组成由80C196KC单片机、存储器、光电编码器、模数转换器、键盘显示器、电机驱动电路等构成的测控系统.有针对性地提出了改进措施,并给出了HSO的应用实例.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文介绍了一种以8098单片机为核心器件的气压伺服及数据来集系统,包括硬件设计,软件编程及测控原理。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文介绍了多卜勒测速原理和测高原理并着重介绍了一种多卜勒测速声纳的实现方法及8098单片机在多卜勒测速声纳的应用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在基因芯片分析系统中,基因芯片荧光靶点图像的正确检测识别是基因特异性表达信息提取的必要前提。在荧光靶点检测识别过程中,由于沾污、瑕疵、离焦等因素的影响,荧光靶点图像的信噪比很低,很容易将污点、基片瑕疵等噪声点误识别为荧光靶点,而将沾污的荧光靶点误识别为噪声点。在原算法基础上,为进一步降低误识别率和提高检测精度,提出基于靶点分割图像重心和目标背景面积比的改进的荧光靶点检测识别算法。实验结果表明,与原算法相比,采用新算法将正确识别率提高到90%以上。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

文章介绍了用C8051F120单片机和MCX314as组成运动控制器的方案。该方案应用存储器扩展的方法为运动控制芯片MCX314as和液晶显示模块MT22G06B的内部寄存器分配地址空间,从而实现C8051F120单片机对运动控制芯片和液晶模块的控制作用。文章还给出了MCX314和MT22G06B的驱动程序架构。