961 resultados para THERMAL FLUCTUATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural-ventilation potential (NVP) value can provide the designers significant information to properly design and arrange natural ventilation strategy at the preliminary or conceptual stage of ventilation and building design. Based on the previous study by Yang et al. [Investigation potential of natural driving forces for ventilation in four major cities in China. Building and Environment 2005;40:739–46], we developed a revised model to estimate the potential for natural ventilation considering both thermal comfort and IAQ issues for buildings in China. It differs from the previous one by Yang et al. in two predominant aspects: (1) indoor air temperature varies synchronously with the outdoor air temperature rather than staying at a constant value as assumed by Yang et al. This would recover the real characteristic of natural ventilation, (2) thermal comfort evaluation index is integrated into the model and thus the NVP can be more reasonably predicted. By adopting the same input parameters, the NVP values are obtained and compared with the early work of Yang et al. for a single building in four representative cities which are located in different climates, i.e., Urumqi in severe cold regions, Beijing in cold regions, Shanghai in hot summer and cold winter regions and Guangzhou in hot summer and warm winter regions of China. Our outcome shows that Guangzhou has the highest and best yearly natural-ventilation potential, followed by Shanghai, Beijing and Urumqi, which is quite distinct from that of Yang et al. From the analysis, it is clear that our model evaluates the NVP values more consistently with the outdoor climate data and thus reveals the true value of NVP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we explore the physico-chemical properties of a peptide amphiphile obtained by chemical conjugation of the collagenstimulating peptide KTTKS with 10,12-pentacosadiynoic acid which photopolymerizes as a stable and extended polydiacetylene. We investigate the self-assembly of this new polymer and rationalize its peculiar behavior in terms of a thermal conformational transition. Surprisingly, this polymer shows a thermal transition associated with a non-cooperative increase in b-sheet content at high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the global market potential of solar thermal, photovoltaic (PV) and combined photovoltaic/thermal (PV/T) technologies in current time and near future was discussed. The concept of the PV/T and the theory behind the PV/T operation were briefly introduced, and standards for evaluating technical, economic and environmental performance of the PV/T systems were addressed. A comprehensive literature review into R&D works and practical application of the PV/T technology was illustrated and the review results were critically analysed in terms of PV/T type and research methodology used. The major features, current status, research focuses and existing difficulties/barriers related to the various types of PV/T were identified. The research methods, including theoretical analyses and computer simulation, experimental and combined experimental/theoretical investigation, demonstration and feasibility study, as well as economic and environmental analyses, applied into the PV/T technology were individually discussed, and the achievement and problems remaining in each research method category were described. Finally, opportunities for further work to carry on PV/T study were identified. The review research indicated that air/water-based PV/T systems are the commonly used technologies but their thermal removal effectiveness is lower. Refrigerant/heat-pipe-based PV/Ts, although still in research/laboratory stage, could achieve much higher solar conversion efficiencies over the air/water-based systems. However, these systems were found a few technical challenges in practice which require further resolutions. The review research suggested that further works could be undertaken to (1) develop new feasible, economic and energy efficient PV/T systems; (2) optimise the structural/geometrical configurations of the existing PV/T systems; (3) study long term dynamic performance of the PV/T systems; (4) demonstrate the PV/T systems in real buildings and conduct the feasibility study; and (5) carry on advanced economic and environmental analyses. This review research helps finding the questions remaining in PV/T technology, identify new research topics/directions to further improve the performance of the PV/T, remove the barriers in PV/T practical application, establish the standards/regulations related to PV/T design and installation, and promote its market penetration throughout the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat pump market in the UK has grown rapidly over the last few years. Performance analyses of vertical ground-loop heat exchanger configurations have been widely carried out using both numerical modelling and experiments. However, research findings and design recommendations on horizontal slinky-loop and vertical slinky-loop heat exchangers are far fewer compared with those for vertical ground-loop heat exchanger configurations, especially where the long-term operation of the systems is concerned. The paper presents the results obtained from a numerical simulation for the horizontal slinky-loop and vertical slinky-loop heat exchangers of a ground-source heat pump system. A three-dimensional numerical heat transfer model was developed to study the thermal performance of various heat exchanger configurations. The influence of the loop pitch (loop spacing) and the depth of a vertical slinky-loop installation were investigated and the thermal performance and excavation work required for the horizontal and vertical slinky-loop heat exchangers were compared. The influence of the installation depth for vertical slinky-loop configurations was also investigated. The results of this study show that the influence of the installation depth of the vertical slinky-loop heat exchanger on the thermal performance of the system is small. The maximum difference in the thermal performance between the vertical and horizontal slinky-loop heat exchangers with the same loop diameter and loop pitch is less than 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control and optimization of flavor is the ultimate challenge for the food and flavor industry. The major route to flavor formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compd. The complexity of the reaction means that researchers turn to kinetic modeling in order to understand the control points of the reaction and to manipulate the flavor profile. Studies of the kinetics of flavor formation have developed over the past 30 years from single- response empirical models of binary aq. systems to sophisticated multi-response models in food matrixes, based on the underlying chem., with the power to predict the formation of some key aroma compds. This paper discusses in detail the development of kinetic models of thermal generation of flavor and looks at the challenges involved in predicting flavor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Around 40% of total energy consumption in the UK is consumed by creating comfortable indoor environment for occupants. Occupants’ behaviour in terms of achieving thermal comfort could have a significant impact on a building’s energy consumption. Therefore, understanding the interactions of occupants with their buildings would be essential to provide a thermal comfort environment that is less reliance on energy-intensive heating, ventilation and air-conditioning systems, to meet energysaving and carbon emission targets. This paper presents the findings of a year-long field study conducted in non-air-conditioned office buildings in the UK. Occupants’ adaptive responses in terms of technological and personal dimensions are dynamic processes which could vary with both indoor and outdoor thermal conditions. The adaptive behaviours of occupants in the surveyed building show substantial seasonal and daily variations. Our study shows that non-physical factors such as habit could influence the adaptive responses of occupants. However, occupants sometimes displayed inappropriate adaptive behaviour, which could lead to a misuse of energy. This paper attempts to illustrate how occupants would adapt and interact with their built environment and consequently contribute to development of a guide for future design/refurbishment of buildings and to develop energy management systems for a comfortable built environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the potential to adapt to warmer climate is constrained by genetic trade-offs, our understanding of how selection and mutation shape genetic (co)variances in thermal reaction norms is poor. Using 71 isofemale lines of the fly Sepsis punctum, originating from northern, central, and southern European climates, we tested for divergence in juvenile development rate across latitude at five experimental temperatures. To investigate effects of evolutionary history in different climates on standing genetic variation in reaction norms, we further compared genetic (co)variances between regions. Flies were reared on either high or low food resources to explore the role of energy acquisition in determining genetic trade-offs between different temperatures. Although the latter had only weak effects on the strength and sign of genetic correlations, genetic architecture differed significantly between climatic regions, implying that evolution of reaction norms proceeds via different trajectories at high latitude versus low latitude in this system. Accordingly, regional genetic architecture was correlated to region-specific differentiation. Moreover, hot development temperatures were associated with low genetic variance and stronger genetic correlations compared to cooler temperatures. We discuss the evolutionary potential of thermal reaction norms in light of their underlying genetic architectures, evolutionary histories, and the materialization of trade-offs in natural environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The situation considered is that of a zonally symmetric model of the middle atmosphere subject to a given quasi-steady zonal force F̄, conceived to be the result of irreversible angular momentum transfer due to the upward propagation and breaking of Rossby and gravity waves together with any other dissipative eddy effects that may be relevant. The model's diabatic heating is assumed to have the qualitative character of a relaxation toward some radiatively determined temperature field. To the extent that the force F̄ may be regarded as given, and the extratropical angular momentum distribution is realistic, the extratropical diabatic mass flow across a given isentropic surface may be regarded as controlled exclusively by the F̄ distribution above that surface (implying control by the eddy dissipation above that surface and not, for instance, by the frequency of tropopause folding below). This “downward control” principle expresses a critical part of the dynamical chain of cause and effect governing the average rate at which photochemical products like ozone become available for folding into, or otherwise descending into, the extratropical troposphere. The dynamical facts expressed by the principle are also relevant, for instance, to understanding the seasonal-mean rate of upwelling of water vapor to the summer mesopause, and the interhemispheric differences in stratospheric tracer transport. The robustness of the principle is examined when F̄ is time-dependent. For a global-scale, zonally symmetric diabatic circulation with a Brewer-Dobson-like horizontal structure given by the second zonally symmetric Hough mode, with Rossby height HR = 13 km in an isothermal atmosphere with density scale height H = 7 km, the vertical partitioning of the unsteady part of the mass circulation caused by fluctuations in F̄ confined to a shallow layer LF̄ is always at least 84% downward. It is 90% downward when the force fluctuates sinusoidally on twice the radiative relaxation timescale and 95% if five times slower. The time-dependent adjustment when F̄ is changed suddenly is elucidated, extending the work of Dickinson (1968), when the atmosphere is unbounded above and below. Above the forcing, the adjustment is characterized by decay of the meridional mass circulation cell at a rate proportional to the radiative relaxation rate τr−1 divided by {1 + (4H2/HR2)}. This decay is related to the boundedness of the angular momentum that can be taken up by the finite mass of air above LF̄ without causing an ever-increasing departure from thermal wind balance. Below the forcing, the meridional mass circulation cell penetrates downward at a speed τr−1 HR2/H. For the second Hough mode, the time for downward penetration through one density scale height is about 6 days if the radiative relaxation time is 20 days, the latter being representative of the lower stratosphere. At any given altitude, a steady state is approached. The effect of a rigid lower boundary on the time-dependent adjustment is also considered. If a frictional planetary boundary layer is present then a steady state is ultimately approached everywhere, with the mass circulation extending downward from LF̄ and closing via the boundary layer. Satellite observations of temperature and ozone are used in conjunction with a radiative transfer scheme to estimate the altitudes from which the lower stratospheric diabatic vertical velocity is controlled by the effective F̄ in the real atmosphere. The data appear to indicate that about 80% of the effective control is usually exerted from below 40 km but with significant exceptions up to 70 km (in the high latitude southern hemispheric winter). The implications for numerical modelling of chemical transport are noted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he classical problem of the response of a balanced, axisymmetric vortex to thermal and mechanical forcing is re-examined, paying special attention to the lower boundary condition. The correct condition is DΦ/Dt = 0, where Φ is the geopotential and D/Dt the material derivative, which explicitly accounts for a mass redistribution as part of the mean-flow response. This redistribution is neglected when using the boundary condition Dp/Dt = 0, which has conventionally been applied in this problem. It is shown that applying the incorrect boundary condition, and thereby ignoring the surface pressure change, leads to a zonal wind acceleration δū/δt that is too strong, especially near the surface. The effect is significant for planetary-scale forcing even when applied at tropopause level. A comparison is made between the mean-flow evolution in a baroclinic life-cycle, as simulated in a fully nonlinear, primitive-equation model, and that predicted by using the simulated eddy fluxes in the zonally-symmetric response problem. Use of the correct lower boundary condition is shown to lead to improved agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the importance to weather and climate of the Indo-Pacific seas, we present a new calibration of the Visible Infrared Spin-Scan Radiometer (VISSR) on the geostationary meteorological satellite, GMS-5. VISSR imagery has significant potential for exploring the dynamics of the ocean and air–sea interactions in this poorly characterized region, by virtue of the VISSR's surface temperature retrieval capability and hourly sampling. However, the calibration of the thermal imagery supplied by the Japanese Meteorological Agency (JMA) is inconsistent with the spectral characteristics of the channels, and published details of the JMA calibration procedure are scant. We use the well-characterized Along-Track Scanning Radiometer 2 (ATSR-2) as a reference, and determine calibration corrections for GMS-5 VISSR. We obtain more credible VISSR brightness temperatures and demonstrate sea surface temperature (SST) retrieval that validates well against in situ measurements (bias ∼0.3 and scatter ∼0.4 K). Comparison with a widely used sea surface temperature analysis shows that the GMS-5 VISSR SST fields capture important spatial structure, absent in the analysis.