953 resultados para Synthetic wavelength
Resumo:
A bidirectional nonreciprocal wavelength-interleaving filter based on an optically coherent high birefringence fiber transversal filter structure is demonstrated. Stable, low loss operation is achieved with reconfigurable transfer characteristics for interleaved channel spacing of 0.8 nm with >30 dB isolation and ultra-low chromatic dispersion.
Resumo:
Abstract—We report an actively mode-locked tunable dual-wavelength erbium-doped fiber laser that uses parallel amplifiers in order to minimize gain cross-saturation effects. We obtain extremely stable, room-temperature dual-wavelength operation at a modulator drive frequency of 1035.38 MHz (corresponding pulsewidths of 115 and 130 ps). Furthermore, we can independently tune the power and wavelength of each lasing output signal without affecting overall output stability. In particular, we achieve a wavelength separation as narrow as 0.3 nm.
Resumo:
We propose a simple Er-doped fiber laser configuration for achieving stable dual-wavelength oscillation at room temperature, in which a high birefringence fiber Bragg grating was used as the wavelength-selective component. Stable dual-wavelength oscillation at room temperature with a wavelength spacing of 0.23 nm and mutually orthogonal polarization stages was achieved by utilizing the polarization hole-burning effect. An amplitude variation of less than 0.7 dB over an 80 s period was obtained for both wavelengths.
Resumo:
We propose a simple Er-doped fiber laser configuration for achieving stable dual-wavelength oscillation at room temperature, in which a high birefringence fiber Bragg grating was used as the wavelength-selective component. Stable dual-wavelength oscillation at room temperature with a wavelength spacing of 0.23nm and mutually orthogonal polarisation states was achieved by utilising the polarisation hole burning effect. An amplitude variation of less than 0.7dB over 80s period was obtained for both wavelengths.
Resumo:
We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single-and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.
Resumo:
The recent advancement in the growth technology of InGaN/GaN has decently positioned InGaN based white LEDs to leap into the area of general or daily lighting. Monolithic white LEDs with multiple QWs were previously demonstrated by Damilano et al. [1] in 2001. However, there are several challenges yet to be overcome for InGaN based monolithic white LEDs to establish themselves as an alternative to other day-to-day lighting sources [2,3]. Alongside the key characteristics of luminous efficacy and EQE, colour rendering index (CRI) and correlated colour temperature (CCT) are important characteristics for these structures [2,4]. Investigated monolithic white structures were similar to that described in [5] and contained blue and green InGaN multiple QWs without short-period superlattice between them and emitting at 440 nm and 530 nm, respectively. The electroluminescence (EL) measurements were done in the CW and pulse current modes. An integration sphere (Labsphere “CDS 600” spectrometer) and a pulse generator (Agilent 8114A) were used to perform the measurements. The CCT and Green/Blue radiant flux ratio were investigated at extended operation currents from 100mA to 2A using current pulses from 100ns to 100μs with a duty cycle varying from 1% to 95%. The strong dependence of the CCT on the duty cycle value, with the CCT value decreasing by more than three times at high duty cycle values (shown at the 300 mA pulse operation current) was demonstrated (Fig. 1). The pulse width variation seems to have a negligible effect on the CCT (Fig. 1). To account for the joule heating, a duty cycle more than 1% was considered as an overheated mode. For the 1% duty cycle it was demonstrated that the CCT was tuneable in three times by modulating input current and pulse width (Fig. 2). It has also been demonstrated that there is a possibility of keeping luminous flux independent of pulse width variation for a constant value of current pulse (Fig. 3).
Resumo:
We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved. © 2014 Optical Society of America.
Resumo:
We have demonstrated a switchable dual wavelength fiber ring laser with a high degree of polarization output by using an intracavity 3-stage all fiber Lyot filter. The filter is formed by concatenating four 45° tilted fiber gratings separated by polarization maintaining fibers with a length ratio of 1:2:4 (20, 40, and 80 cm), giving a compact integrated configuration with reduced bandwidth. Switchable dual wavelength or single wavelength output at 1533.5 and 1563.3 nm has been achieved. The output lasing is considerably stable owing to the in-phase mode-selecting function of the multistage Lyot filter, and has a very high degree of polarization higher than 99.9%. © 1989-2012 IEEE.
Resumo:
PURPOSE. To establish the optimal flash settings for retinal vessel oxygen saturation parameters using dual-wavelength imaging in a multiethnic group. METHODS. Twelve healthy young subjects (mean age 32 years [SD 7]; three Mediterranean, two South Asian, and seven Caucasian individuals) underwent retinal vessel oxygen saturation measurements using dual-wavelength oximetry, noncontact tonometry, and manual sphygmomanometry. In order to evaluate the impact of flash intensity, we obtained three images (fundus camera angle 30°, ONH centered) per flash setting. Flash settings of the fundus camera were increased in steps of 2 (initial setting of 6 and the final of 22), which reflect logarithmic increasing intensities from 13.5 to 214 Watt seconds (Ws). RESULTS. Flash settings below 27 Ws were too low to obtain saturation measurements, whereas flash settings of more than 214 Ws resulted in overexposed images. Retinal arteriolar and venular oxygen saturation was comparable at flash settings of 27 to 76 Ws (arterioles' range: 85%-92%; venules' range: 45%-53%). Higher flash settings lead to increased saturation measurements in both retinal arterioles (up to 110%) and venules (up to 92%), with a more pronounced increase in venules. CONCLUSIONS. Flash intensity has a significant impact on retinal vessel oxygen saturation measurements using dual-wavelength retinal oximetry. High flash intensities lead to supranormal oxygen saturation measurements with a magnified effect in retinal venules compared with arteries. In addition to even retinal illumination, the correct flash setting is of paramount importance for clinical acquisition of images in retinal oximetry. We recommend flash settings between 27 to 76 Ws. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The transmission loss in polymer optical fiber (POF) is much higher than that in silica fiber. Very strong absorption bands dominate throughout the visible and near infrared. Optical absorption increases the internal temperature of the polymer fiber and reduces the wavelength of any POF Bragg grating (POFBG) inscribed within the fiber. In this letter, we have investigated the wavelength drift of FBGs inscribed in poly(methyl methacrylate)-based fiber under illumination at different wavelengths. The experiments have shown that the characteristic wavelength of such a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fiber is established, depending on the surrounding humidity, optical power applied, and operation wavelength.
Resumo:
We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4 × 4, 3 × 5, and 2 μm × 6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm × 4 μm.
Resumo:
An effective aperture approach is used as a tool for analysis and parameter optimization of mostly known ultrasound imaging systems - phased array systems, compounding systems and synthetic aperture imaging systems. Both characteristics of an imaging system, the effective aperture function and the corresponding two-way radiation pattern, provide information about two of the most important parameters of images produced by an ultrasound system - lateral resolution and contrast. Therefore, in the design, optimization of the effective aperture function leads to optimal choice of such parameters of an imaging systems that influence on lateral resolution and contrast of images produced by this imaging system. It is shown that the effective aperture approach can be used for optimization of a sparse synthetic transmit aperture (STA) imaging system. A new two-stage algorithm is proposed for optimization of both the positions of the transmitted elements and the weights of the receive elements. The proposed system employs a 64-element array with only four active elements used during transmit. The numerical results show that Hamming apodization gives the best compromise between the contrast of images and the lateral resolution.
Resumo:
We have previously described ProxiMAX, a technology that enables the fabrication of precise, combinatorial gene libraries via codon-by-codon saturation mutagenesis. ProxiMAX was originally performed using manual, enzymatic transfer of codons via blunt-end ligation. Here we present Colibra™: an automated, proprietary version of ProxiMAX used specifically for antibody library generation, in which double-codon hexamers are transferred during the saturation cycling process. The reduction in process complexity, resulting library quality and an unprecedented saturation of up to 24 contiguous codons are described. Utility of the method is demonstrated via fabrication of complementarity determining regions (CDR) in antibody fragment libraries and next generation sequencing (NGS) analysis of their quality and diversity.
Resumo:
A simple and cost-effective technique for generating a flat, square-shaped multi-wavelength optical comb with 42.6 GHz line spacing and over 0.5 THz of total bandwidth is presented. A detailed theoretical analysis is presented, showing that using two concatenated modulators driven with voltages of 3.5 Vp are necessary to generate 11 comb lines with a flatness below 2dB. This performance is experimentally demonstrated using two cascaded Versawave 40 Gbit/s low drive voltage electro-optic polarisation modulators, where an 11 channel optical comb with a flatness of 1.9 dB and a side-mode-suppression ratio (SMSR) of 12.6 dB was obtained.
Resumo:
A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.