964 resultados para Surfactant-Free ZnO Quantum Dots
Resumo:
We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.
Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template
Resumo:
We report a new approach for the synthesis of fluorescent and water-soluble Ag nanoclusters, using the common polyelectrolyte poly(methacrylic acid) as the template.
Resumo:
[Ru(bpy)(3)](2+)-doped silica (RuSi) nanoparticles were synthesized by using a water/oil microemulsion method. Stable electrochemiluminescence (ECL) was obtained when the RuSi nanoparticles were immobilized on a glassy carbon electrode by using tripropylamine (TPA) as a coreactant. Furthermore, the ECL of the RuSi nanoparticles with layer-by-layer biomolecular coatings was investigated. Squential self-assembly of the polyelectrolytes and biomolecules on the RuSi nanoparticles gave nanocomposite suspensions, the ECL of which decreased on increasing the number of bilayers.
Resumo:
One-dimensional YVO4:Ln and Y(V, P)O-4:Ln nanofibers and quasi-one-dimensional YVO4:Ln microbelts (Ln = Eu3+, Sm3+, Dy3+) have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples.
Resumo:
A novel selenium source was developed to synthesize the size-controlled CdSe nanocrystals with relatively narrow size distribution successfully in a two-phase thermal approach. A highly reactive and aqueous soluble selenium source was provided by the reduction of selenite, and in this route the size of the nanocrystals can be adjusted by the reaction temperature and time. The size, crystalline structure and optical characteristics of these nanocrystals were investigated by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and photoluminescence spectroscopy. The influence factors for this approach were also discussed.
Resumo:
Monodispersed KY3F10:Eu3+ nanospheres with bimodal size distribution have been successfully synthesized via a facile and efficient sonochemical method in a surfactant-free system. Rare-earth nitrate (Y, Eu)(NO3)(3) and potassium fluoborate (KBF4) were used as precursors. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectra were used to characterize the samples.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.
Resumo:
We present a facile, economical microwave pyrolysis approach to synthesize fluorescent carbon nanoparticles with electrochemiluminescence properties.
Resumo:
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach.
Resumo:
We report a simple fluorescent method for sensitive cyanide detection based on the dissolution of Rhodamine B-adsorbed gold nanoparticles by cyanide.
Resumo:
In this work,we report the application of novel, water-soluble fluorescent Ag clusters in fluorescent sensors for detecting cysteine, an important biological analyte. The fluorescence of poly(methacrylic acid) (PMAA)templated Ag clusters was found to be quenched effectively by cysteine, but not when the other alpha-amino acids were present. By virtue of the specific response, a new, simple, and sensitive fluorescent method for detecting cysteine has been developed based on Ag clusters. The present assay allows for the selective determination of cysteine in the range of 2.5 x 10(-8) to 6.0 x 10(-6) M with a detection limit of 20 nM at a signal-to-noise ratio of 3. Based on the absorption and fluorescence studies, we suggested that cysteine quenched the emission by the thiol-adsorption-accelerated oxidation of the emissive Ag clusters. The present study shows a promising step toward the application of silver clusters, a new class of attractive fluorescence probes.
Resumo:
A simple, sensitive fluorescent method for detecting cyanide has been developed based on the inner filter effect (IFE) of silver nanoparticles (Ag NPs). With a high extinction coefficient and tunable plasmon absorption feature, Ag NPs are expected to be a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In the present work, we developed a turn-on fluorescent assay for cyanide based on the strong absorption of Ag NPs to both excitation and emission light of an isolated fluorescence indicator. In the presence of cyanide, the absorber Ag NPs will dissolve gradually, which then leads to recovery of the IFE-decreased emission of the fluorophore. The concentration of Ag NPs in the detection system was found to affect the fluorescence response toward cyanide greatly. Under the optimum conditions, the present IFE-based approach can detect cyanide ranging from 5.0 x 10 (7) to 6.0 x 10 (4) M with a detection limit of 2.5 x 10 (7) M, which is much lower than the corresponding absorbance-based approach and compares favorably with other reported fluorescent methods.
Resumo:
Hydroxyapatite (Ca-5(PO4)(3)OH) nano- and microcrystals with multiform morphologies (separated nanowires, nanorods, microspheres, microflowers, and microsheets) have been successfully synthesized by a facile hydrothermal process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance (EPR) were used to characterize the samples. The experimental results indicate that the obtained Ca-5(PO4)(3)OH samples show an intense and bright blue emission under long-wavelength UV light excitation. This blue emission might result from the CO2 center dot- radical impurities in the crystal lattice.
Resumo:
Gd2MoO6:Eu3+ nanofibers and nanobelts have been prepared by a combination method of the sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy, photoluminescence, and low voltage cathodoluminescence as well as kinetic decays were used to characterize the resulting samples. The results of XRD and FTIR indicate that the Gd2MoO6:Eu3+ samples have crystallized at 600 degrees C with the monoclinic (alpha) structure. The SEM and TEM results indicate that the as-formed precursor fibers and belts are uniform and that the as-prepared nanofibers and nanobelts consist of nanoparticles. Gd2MoO6:Eu3+ phosphors show their strong characteristic emission under UV excitation (353 nm) and low voltage electron-beam excitation (3 kV), making the materials have potential applications in fluorescent lamps and field-emission displays.