935 resultados para Surface sampel analysis
Resumo:
Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells.
Resumo:
Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.
Resumo:
It is possible and common to obtain equivalent natural frequency and damping for a soil-foundation system from results of experimental or numerical analysis assuming the system has a single degree of freedom. Three approaches to extract natural frequency and damping were applied to the vertically vibrated soil-foundation system. The sensitivity of the computed natural frequency and damping to the soil properties was evaluated through parametric studies. About 10-20% of discrepancy in values of natural frequency was observed due to different approaches. The results help to assess the reliability of equivalent soil properties determined from the reported natural frequency of the system. Finally the results obtained using theoretical predictions with linear soil properties measured in situ were compared to those calculated from experimental data. The prediction and experimental results showed good agreements if the embedment of the foundation is neglected with stepped sine test but considered with impulse test. © 2010 Elsevier Ltd.
Resumo:
Recently developed equipment allows measurement of the shear modulus of soil in situ as a function of level of strain. In these field experiments, the excitation is applied on the ground surface using large scale shakers, and the response of the soil deposit is recorded through embedded receivers. The focus of this paper is on the simulation of signals which would be recorded at the receiver locations in idealized conditions to provide guidelines on the interpretation of field measurements. Discrete and finite element methods are employed to model one dimensional and three dimensional geometries, respectively, under various lateral boundary conditions. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave, related to the constrained modulus of the material, regardless of lateral boundary conditions. If one considers, on the other hand, phase differences between the motions at two receivers the picture is far more complicated and one would obtain propagation velocities, function of frequency and depth, which do not correspond to either the constrained modulus or Young's modulus. It is thus necessary to apply some care when interpreting the data from field tests based on vertical steady state vibrations. The use of inverse analysis can be considered as a way of extracting the shear modulus of soil from the field test measurements. © 2008 ASCE.
Resumo:
Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate how a prior assumption of smoothness can be used to enhance the reconstruction of free energy profiles from multiple umbrella sampling simulations using the Bayesian Gaussian process regression approach. The method we derive allows the concurrent use of histograms and free energy gradients and can easily be extended to include further data. In Part I we review the necessary theory and test the method for one collective variable. We demonstrate improved performance with respect to the weighted histogram analysis method and obtain meaningful error bars without any significant additional computation. In Part II we consider the case of multiple collective variables and compare to a reconstruction using least squares fitting of radial basis functions. We find substantial improvements in the regimes of spatially sparse data or short sampling trajectories. A software implementation is made available on www.libatoms.org.
Resumo:
An indirect inhibitive surface plasmon resonance (SPR) immunoassay was developed for the microcystins (MCs) detection. The bioconjugate of MC-LR and bovine serum albumin (BSA) was immobilized on a CM5 sensor chip. A serial premixture of MC-LR standards (or samples) and monoclonal antibody (mAb) were injected over the functional sensor surface, and the subsequent specific immunoreaction was monitored on the BIAcore 3000 biosensor and generated a signal with an increasing intensity in response to the decreasing MCs concentration. The developed SPR immunoassay has a wide quantitative range in 1-100 mu g L-1. Although not as sensitive as conventional enzyme-linked immunosorbent assay (ELISA), the SPR biosensor offered unique advantages: (I) the sensor chip could be reusable without any significant loss in its binding activity after 50 assay-regeneration cycles, (2) one single assay could be accomplished in 50 min (including 30-min preincubation and 20-min BIAcore analysis), and (3) this method did not require multiple steps. The SPR biosensor was also used to detect MCs in environmental samples, and the results compared well with those obtained by ELISA. We conclude that the SPR biosensor offers outstanding advantages for the MCs detection and may be further developed as a field-portable sensor for real-time monitoring of MCs on site in the near future. (C) 2009 Published by Elsevier B.V.
Resumo:
We consider the axial buckling of a thin-walled cylinder fitted onto a mandrel core with a prescribed annular gap. The buckling pattern develops fully and uniformly to yield a surface texture of regular diamond-shaped buckles, which we propose for novel morphing structures. We describe experiments that operate well into the postbuckling regime, where a classical analysis does not apply; we show that the size of buckles depends on the cylinder radius and the gap width, but not on its thickness, and we formulate simple relationships from kinematics alone for estimating the buckle proportions during loading. © 2014 by ASME.
Resumo:
The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon stable isotope analysis of surface bloom scum and subsurface seston samples was conducted in shallow eutrophic lakes in China during warm seasons from 2003 to 2004. delta C-13 values of bloom scum were always higher (averaged 5 parts per thousand) than those of seston in this study, and the possible reasons were attributed to (i) direct use of atmospheric CO2 at the air-water interface, (ii) decrease in C-13 fractionation due to higher carbon fixation, (iii) active CO2 transport, and/or (iv) HCO3 accumulation. Negative correlation between delta C-13(scum) - delta C-13(seston) and pH in the test lakes indicated that phytoplankton at the subsurface water column increased isotopic enrichment under the-carbon limitation along with the increase of pH, which might in turn decreased the differences in 313 C between the subsurface seston and the surface scums. Significant positive correlations of seston 8 13C with total concentrations of nitrogen and phosphorus in water column suggested that the increase in delta C-13 of seston with trophic state was depending on nutrient (N or P, or both) supply. Our study showed that delta C-13 of phytoplankton was indicative of carbon utilization, primary productivity, and nutrient supply among the eutrophic lakes. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
The sustainable remediation concept, aimed at maximizing the net environmental, social, and economic benefits in contaminated site remediation, is being increasingly recognized by industry, governments, and academia. However, there is limited understanding of actual sustainable behaviour being adopted and the determinants of such sustainable behaviour. The present study identified 27 sustainable practices in remediation. An online questionnaire survey was used to rank and compare them in the US (n=112) and the UK (n=54). The study also rated ten promoting factors, nine barriers, and 17 types of stakeholders' influences. Subsequently, factor analysis and general linear models were used to determine the effects of internal characteristics (i.e. country, organizational characteristics, professional role, personal experience and belief) and external forces (i.e. promoting factors, barriers, and stakeholder influences). It was found that US and UK practitioners adopted many sustainable practices to similar extents. Both US and UK practitioners perceived the most effectively adopted sustainable practices to be reducing the risk to site workers, protecting groundwater and surface water, and reducing the risk to the local community. Comparing the two countries, we found that the US adopted innovative in-situ remediation more effectively; while the UK adopted reuse, recycling, and minimizing material usage more effectively. As for the overall determinants of sustainable remediation, the country of origin was found not to be a significant determinant. Instead, organizational policy was found to be the most important internal characteristic. It had a significant positive effect on reducing distant environmental impact, sustainable resource usage, and reducing remediation cost and time (p<0.01). Customer competitive pressure was found to be the most extensively significant external force. In comparison, perceived stakeholder influence, especially that of primary stakeholders (site owner, regulator, and primary consultant), did not appear to have as extensive a correlation with the adoption of sustainability as one would expect.
Resumo:
Organic pollutants, especially persistent organic pollutants were examined in the water and surface sediments of Taihu Lake, China. Both 12 water and 12 sediment samples were collected over the lake. C-18 solid-phase extraction technique was applied to extract organic pollutants in collected water samples. Soxhlet extraction procedure was used to extract organic pollutants in sediment samples. The analysis was performed by GC-MS controlled by a Hewlett Packard chemstation. Two hundred and seventy-three kinds of organic chemicals in water were examined, 200 more than that detected in 1985; 188 kinds of chemicals in sediments were detected as well. Among them 21 kinds of chemicals belong to priority pollutants as well as 17 kinds to be the endocrine disruptors. The concentrations of the pollutants were more than 2 times higher than that in 1985. The possible source and relation to anthropogenic activity were discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the lineshape analysis of the beat signal between the optical carrier and the shifted and delayed side-bands produced by sinusoidal amplitude modulation. It is shown that the beat signal has a typical lineshape with a very narrow delta-peak superposed on a quasi-Lorentzian profile. Theoretical explanation for the appearance of this peak has been given based on optical spectral structure constructed by a large number of optical wave trains. It is predicted that the delta-peak is originated from the beat between the wave trains in the carrier and those in the delayed sidebands when their average coherence length is longer than the delay line. Experiments carried out using different delay lines clearly show that the delta-peak is always located at the modulation frequency and decreases with the increasing delay line. Our analysis explicitly indicates that the linewidth is related to the observation time. It is also suggested that the disappearance of the delta-peak can be used as the criterion of coherence elimination.
Resumo:
We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.
Resumo:
A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.