961 resultados para Supervised pattern recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Template matching by means of cross-correlation is common practice in pattern recognition. However, its sensitivity to deformations of the pattern and the broad and unsharp peaks it produces are significant drawbacks. This paper reviews some results on how these shortcomings can be removed. Several techniques (Matched Spatial Filters, Synthetic Discriminant Functions, Principal Components Projections and Reconstruction Residuals) are reviewed and compared on a common task: locating eyes in a database of faces. New variants are also proposed and compared: least squares Discriminant Functions and the combined use of projections on eigenfunctions and the corresponding reconstruction residuals. Finally, approximation networks are introduced in an attempt to improve filter design by the introduction of nonlinearity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition -- the classification of handwritten digits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. Jensen and Q. Shen. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough Based Approaches. IEEE Transactions on Knowledge and Data Engineering, 16(12): 1457-1471. 2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Q. Shen and R. Jensen, 'Rough sets, their extensions and applications,' International Journal of Automation and Computing (IJAC), vol. 4, no. 3, pp. 217-218, 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. Jensen and Q. Shen, 'Fuzzy-Rough Data Reduction with Ant Colony Optimization,' Fuzzy Sets and Systems, vol. 149, no. 1, pp. 5-20, 2005.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Q. Shen and R. Jensen, 'Selecting Informative Features with Fuzzy-Rough Sets and its Application for Complex Systems Monitoring,' Pattern Recognition, vol. 37, no. 7, pp. 1351-1363, 2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. Jensen, Q. Shen and A. Tuson, 'Finding Rough Set Reducts with SAT,' Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, LNAI 3641, pp. 194-203, 2005.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liu, Yonghuai. Improving ICP with Easy Implementation for Free Form Surface Matching. Pattern Recognition, vol. 37, no. 2, pp. 211-226, 2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liu, Yonghuai. Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern Recognition, vol. 38, no. 10, pp. 1615-1631, 2005.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Y. Zhu, S. Williams and R. Zwiggelaar, 'A hybrid ASM approach for sparse volumetric data segmentation', Pattern Recognition and Image Analysis 17 (2), 252-258 (2007)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

R. Marti, C. Rubin, E. Denton and R. Zwiggelaar, '2D-3D correspondence in mammography', Cybernetics and Systems 35 (1), 85-105 (2004)