870 resultados para Sunsynchronous satellites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tide propagation through coastal wetlands is a complex phenomenon affected by vegetation, channels, and tidal conditions. Generally, tidal flow is studied using stage (water level) observations, which provide good temporal resolution, but they are acquired in limited locations. Here, a remote-sensing technique, wetland InSAR (interferometric synthetic aperture radar), is used to detect tidal flow in vegetated coastal environments over broad spatial scales. The technique is applied to data sets acquired by three radar satellites over the western Everglades in south Florida. Interferometric analysis of the data shows that the greatest water-level changes occur along tidal channels, reflecting a high velocity gradient between fast horizontal flow in the channel and the slow flow propagation through the vegetation. The high-resolution observations indicate that the tidal flushing zone extends 2–3 km on both sides of tidal channels and can extend 3–4 km inland from the end of the channel. The InSAR observations can also serve as quantitative constraints for detailed coastal wetland flow models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm**-2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 Wm**-2 and 397 Wm**-2, respectively, this leaves 106 Wm**-2 of surface net radiation available for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm**-2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brazilian Environmental Data Collecting System (SBCDA) collects and broadcasts meteorological and environmental data, to be handled by dozens of institutions and organizations. The system space segment, composed by the data collecting satellites, plays an important role for the system operation. To ensure the continuity and quality of these services, efforts are being made to the development of new satellite architectures. Aiming a reduction of size and power consumption, the design of an integrated circuit containing a receiver front-end is proposed, to be embedded in the next SBCDA satellite generations. The circuit will also operate under the requirements of the international data collecting standard ARGOS. This work focuses on the design of an UHF low noise amplifier and mixers in a CMOS standard technology. The specifi- cations are firstly described and the circuit topologies presented. Then the circuit conception is discussed and the design variables derived. Finally, the layout is designed and the final results are commented. The chip will be fabricated in a 130 nm technology from ST Microelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A circumpolar representative and consistent wetland map is required for a range of applications ranging from upscaling of carbon fluxes and pools to climate modelling and wildlife habitat assessment. Currently available data sets lack sufficient accuracy and/or thematic detail in many regions of the Arctic. Synthetic aperture radar (SAR) data from satellites have already been shown to be suitable for wetland mapping. Envisat Advanced SAR (ASAR) provides global medium-resolution data which are examined with particular focus on spatial wetness patterns in this study. It was found that winter minimum backscatter values as well as their differences to summer minimum values reflect vegetation physiognomy units of certain wetness regimes. Low winter backscatter values are mostly found in areas vegetated by plant communities typically for wet regions in the tundra biome, due to low roughness and low volume scattering caused by the predominant vegetation. Summer to winter difference backscatter values, which in contrast to the winter values depend almost solely on soil moisture content, show expected higher values for wet regions. While the approach using difference values would seem more reasonable in order to delineate wetness patterns considering its direct link to soil moisture, it was found that a classification of winter minimum backscatter values is more applicable in tundra regions due to its better separability into wetness classes. Previous approaches for wetland detection have investigated the impact of liquid water in the soil on backscatter conditions. In this study the absence of liquid water is utilized. Owing to a lack of comparable regional to circumpolar data with respect to thematic detail, a potential wetland map cannot directly be validated; however, one might claim the validity of such a product by comparison with vegetation maps, which hold some information on the wetness status of certain classes. It was shown that the Envisat ASAR-derived classes are related to wetland classes of conventional vegetation maps, indicating its applicability; 30% of the land area north of the treeline was identified as wetland while conventional maps recorded 1-7%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 mu m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_H) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GloboLakes project, a global observatory of lake responses to environmental change, aims to exploit current satellite missions and long remote-sensing archives to synoptically study multiple lake ecosystems, assess their current condition, reconstruct past trends to system trajectories, and assess lake sensitivity to multiple drivers of change. Here we describe the selection protocol for including lakes in the global observatory based upon remote-sensing techniques and an initial pool of the largest 3721 lakes and reservoirs in the world, as listed in the Global Lakes and Wetlands Database. An 18-year-long archive of satellite data was used to create spatial and temporal filters for the identification of waterbodies that are appropriate for remote-sensing methods. Further criteria were applied and tested to ensure the candidate sites span a wide range of ecological settings and characteristics; a total 960 lakes, lagoons, and reservoirs were selected. The methodology proposed here is applicable to new generation satellites, such as the European Space Agency Sentinel-series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We calculate net community production (NCP) during summer 2005-2006 and spring 2006 in the Ross Sea using multiple approaches to determine the magnitude and consistency of rates. Water column carbon and nutrient inventories and surface ocean O2/Ar data are compared to satellite-derived primary productivity (PP) estimates and 14C uptake experiments. In spring, NCP was related to stratification proximal to upper ocean fronts. In summer, the most intense C drawdown was in shallow mixed layers affected by ice melt; depth-integrated C drawdown, however, increased with mixing depth. Delta O2/Ar-based methods, relying on gas exchange reconstructions, underestimate NCP due to seasonal variations in surface Delta O2/Ar and NCP rates. Mixed layer Delta O2/Ar requires approximately 60 days to reach steady state, starting from early spring. Additionally, cold temperatures prolong the sensitivity of gas exchange reconstructions to past NCP variability. Complex vertical structure, in addition to the seasonal cycle, affects interpretations of surface-based observations, including those made from satellites. During both spring and summer, substantial fractions of NCP were below the mixed layer. Satellite-derived estimates tended to overestimate PP relative to 14C-based estimates, most severely in locations of stronger upper water column stratification. Biases notwithstanding, NCP-PP comparisons indicated that community respiration was of similar magnitude to NCP. We observed that a substantial portion of NCP remained as suspended particulate matter in the upper water column, demonstrating a lag between production and export. Resolving the dynamic physical processes that structure variance in NCP and its fate will enhance the understanding of the carbon cycling in highly productive Antarctic environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laura Kurgan’s Monochrome Landscapes (2004), first exhibited in the Whitney Museum of American Art in New York City, consists of four oblong Cibachrome prints derived from digital files sourced from the commercial Ikonos and QuickBird satellites. The prints are ostensibly flat, depthless fields of white, green, blue, and yellow, yet the captions provided explain that the sites represented are related to contested military, industrial, and cartographic practices. In Kurgan’s account of Monochrome Landscapes she explains that it is in dialogue with another work from the Whitney by abstract artist Ellsworth Kelly. This article pursues the relationship between formalist abstraction and satellite imaging in order to demonstrate how formalist strategies aimed at producing an immediate retinal response are bound up with contemporary uses of digital information and the truth claims such information can be made to substantiate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin i <2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be , the radius to be 1.066 ± 0.012 Ro, and the age to be Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii ⊕ and precise mass measurements appear to fall into two populations, with those ⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kepler-93b is a 1.478 ± 0.019 R ⊕ planet with a4.7 day period around a bright (V = 10.2), astroseismicallycharacterized host star with a mass of 0.911 ± 0.033 M⊙ and a radius of 0.919 ± 0.011 R⊙. Based on 86 radial velocity observations obtainedwith the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32archival Keck/HIRES observations, we present a precise mass estimate of4.02 ± 0.68 M ⊕. The corresponding high densityof 6.88 ± 1.18 g cm-3 is consistent with a rockycomposition of primarily iron and magnesium silicate. We compareKepler-93b to other dense planets with well-constrained parameters andfind that between 1 and 6 M ⊕, all dense planetsincluding the Earth and Venus are well-described by the same fixed ratioof iron to magnesium silicate. There are as of yet no examples of suchplanets with masses >6 M ⊕. All known planets inthis mass regime have lower densities requiring significant fractions ofvolatiles or H/He gas. We also constrain the mass and period of theouter companion in the Kepler-93 system from the long-term radialvelocity trend and archival adaptive optics images. As the sample ofdense planets with well-constrained masses and radii continues to grow,we will be able to test whether the fixed compositional model found forthe seven dense planets considered in this paper extends to the fullpopulation of 1-6 M ⊕ planets.Based on observations made with the Italian Telescopio Nazionale Galileo(TNG) operated on the island of La Palma by the Fundación GalileoGalilei of the INAF (Istituto Nazionale di Astrofisica) at the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of the physical properties of trans-Neptunian objects (TNOs) are a powerful probe into the processes of planetesimal formation and solar system evolution. James Webb Space Telescope (JWST) will provide unique new capabilities for such studies. Here, we outline where the capabilities of JWST open new avenues of investigation, potentially valuable observations and surveys, and conclude with a discussion of community actions that may serve to enhance the eventual science return of JWST's TNO observations.