1000 resultados para Submaximal strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of multiphase steels with high strength and improved toughness or ductility, such as intercritically annealed dual-phase (DP) and transformation-induced plasticity (TRIP) steels, is of key importance to the automotive industry. In this work we have considered the entire manufacturing process and the effects of this on the final product performance. These steels are formed to produce the required final shape and then the car is paint baked. In this work we also consider the effect of cold working and bake hardening on the fatigue life of the components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of composition and processing schedule on the microstructure of C-Mn-Si-Mo-(Al)-(Nb) steels containing nano-bainite was studied using transmission electron microscopy (TEM) and atom probe tomography (APT). The major phase formed in all steels was nano-bainite. However, the steels with lower carbon and alloying addition content subjected to TMP had better mechanical properties than high alloyed steel after isothermal treatment. The presence of ferrite in the microstructure can improve not only ductility but lead to the formation of retained austenite with optimum chemical stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Exercise is widely recommended to reduce osteoporosis, falls and related fragility fractures, but its effect on whole bone strength has remained inconclusive. The primary purpose of this systematic review and meta-analysis was to evaluate the effects of long-term supervised exercise (≥6 months) on estimates of lower-extremity bone strength from childhood to older age.

Methods
We searched four databases (PubMed, Sport Discus, Physical Education Index, and Embase) up to October 2009 and included 10 randomised controlled trials (RCTs) that assessed the effects of exercise training on whole bone strength. We analysed the results by age groups (childhood, adolescence, and young and older adulthood) and compared the changes to habitually active or sedentary controls. To calculate standardized mean differences (SMD; effect size), we used the follow-up values of bone strength measures adjusted for baseline bone values. An inverse variance-weighted random-effects model was used to pool the results across studies.

Results

Our quality analysis revealed that exercise regimens were heterogeneous; some trials were short in duration and small in sample size, and the weekly training doses varied considerably between trials. We found a small and significant exercise effect among pre- and early pubertal boys [SMD, effect size, 0.17 (95% CI, 0.02-0.32)], but not among pubertal girls [-0.01 (-0.18 to 0.17)], adolescent boys [0.10 (-0.75 to 0.95)], adolescent girls [0.21 (-0.53 to 0.97)], premenopausal women [0.00 (-0.43 to 0.44)] or postmenopausal women [0.00 (-0.15 to 0.15)]. Evidence based on per-protocol analyses of individual trials in children and adolescents indicated that programmes incorporating regular weight-bearing exercise can result in 1% to8% improvements in bone strength at the loaded skeletal sites. In premenopausal women with high exercise compliance, improvements ranging from 0.5% to 2.5% have been reported.

Conclusions
The findings from our meta-analysis of RCTs indicate that exercise can significantly enhance bone strength at loaded sites in children but not in adults. Since few RCTs were conducted to investigate exercise effects on bone strength, there is still a need for further well-designed, long-term RCTs with adequate sample sizes to quantify the effects of exercise on whole bone strength and its structural determinants throughout life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population.

Objective: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children.

Design:
Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7–10 y.

Results: Overweight children (n = 93) had greater values for bone variables (0.3–1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21–87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 ± 28% compared with 57 ± 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = −0.17 to −0.54; P < 0.0001).

Conclusions:
Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to compare the relative contribution of peak muscle force (isokinetic peak torque) with surrogate estimates of muscle force, including leg lean tissue mass (LTM) and vertical jump height (VJH), on bone mass, geometry and strength in healthy prepubertal girls (n = 103).

Methods:
Total leg and FN BMC and leg LTM were measured by DXA; the hip strength analysis program was used to assess FN diameter, cross-sectional area (CSA) and section modulus (Z). Isokinetic peak torque of the knee extensors and flexors (60°·s-1) were used as direct measures of peak muscle force. VJH was measured as an estimate of neuromuscular function. Total leg length or femoral length was used as a surrogate measure of moment arm length.

Results:
All estimates of muscle function, except VJH, were positively associated with leg BMC (r = 0.72 - 0.90) and FN BMC, geometry and strength (r = 0.35-0.65) (all, P < 0.001). Multiple linear regression analyses revealed that leg LTM and isokinetic peak torque were independently and equally predictive of leg BMC and FN BMC, bone geometry and strength, explaining 8 to 28% of the variance in each of the bone traits after accounting for moment arm length. When isokinetic peak torque was corrected for both leg LTM and moment arm length, it remained an independent predictor of BMC, CSA and Z, but only accounted for an additional 2 to 5% of the variance.

Conclusion: These data suggest that DXA-derived leg LTM can be used as a reasonable surrogate for isokinetic peak muscle forces when assessing bone strength in relation to muscular function in healthy pre-pubertal girls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To investigate the long-term effects of habitual physical activity on changes in musculoskeletal health, functional performance, and fracture risk in elderly men and women.

DESIGN: Ten-year prospective population-based study.

SETTING: Malmö-Sjöbo Prospective Study, Sweden.

PARTICIPANTS: Participants were 152 men and 206 women aged 50, 60, 70, and 80 who were followed for 10 years.

MEASUREMENTS: Distal radius bone mineral density (BMD) (single photon absorptiometry), upper limb muscle (grip) strength, balance, gait velocity, occupational and leisure-time activity, and fractures (interview-administered questionnaire) were reassessed after 10 years. Annual changes for all measures were compared between participants with varying habitual physical activity histories at baseline and follow-up: inactive–inactive (n=202), active–inactive (n=47), inactive–active (n=49), and active–active (n=60). Data for men and women were pooled, because there were no sex-by-activity group interactions. To detect possible differences in fracture incidence between the varying habitual activity groups, participants were classified into two activity groups based on their activity classification at baseline and follow-up: inactive:less active versus active:more active.

RESULTS:
The annual rate of bone loss was 0.6% per year less in individuals classified as active at both time points than in those classified as inactive at both time points (P<.01). Similar results were observed for balance, but there was no effect of varying habitual activity on changes in muscle strength or gait velocity. There were also no differences in fracture incidence between individuals categorized as active:more active and those categorized as inactive:less active during the follow-up (adjusted hazard ratio=0.90, 95% confidence interval (CI)=0.42–1.90).

CONCLUSION:
This study showed that elderly men and women who maintained a habitually active lifestyle over 10 years had lower bone loss and retained better balance than those who remained habitually inactive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contralateral transfer of strength following unilateral strength training (ULS) is thought to be due to changes within the nervous system. Using transcranial magnetic stimulation (TMS) we compared corticospinal responses following ULS of the right biceps brachii (BB) projecting to the untrained left BB. Motor evoked potentials (MEPs) were recorded from both BB of 23 individuals pre and post 4 weeks heavy load (80% of 1RM) ULS of right BB. TMS was delivered at intensities below active motor threshold (AMT) to saturation of the MEP (MEPmax). ULS resulted in a 28% increase in 1RM right BB strength, resulting in a 19.2% increase in contralateral strength of the left BB (p = .0001). There was a significant increase in MEP amplitude of 30.3% (p = .03), 33% (p = .05), and 26.5% (p = .01) at AMT, 20% above AMT and MEPmax respectively. No significant differences in silent period were seen at AMT, 20% above AMT or MEPmax. This study has demonstrated increased corticospinal excitability projecting to the untrained arm following heavy load ULS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evidence for neural mechanisms underpinning rapid strength increases has been investigated and discussed for over 30 years using indirect methods, such as surface electromyography, with inferences made toward the nervous system. Alternatively, electrical stimulation techniques such as the Hoffman reflex, volitional wave, and maximal wave have provided evidence of central nervous system changes at the spinal level. For 25 years, the technique of transcranial magnetic stimulation (TMS) has allowed for noninvasive supraspinal measurement of the human nervous system in a number of areas such as fatigue, skill acquisition, clinical neurophysiology, and neurology. However, it has only been within the last decade that this technique has been used to assess neural changes after strength training. The aim of this brief review is to provide an overview of TMS, discuss specific strength training studies that have investigated changes, after short-term strength training in healthy populations in upper and lower limbs, and conclude with further research suggestions and the application of this knowledge for the strength and conditioning coach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR.