983 resultados para Strontium Isotopes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment records of the stable isotopic composition of N (d15N) show light d15N values at several sites in the proto-North Atlantic during Oceanic Anoxic Event 2 (OAE 2) at the Cenomanian-Turonian transition (~94 Ma). The low d15N during the event is generally attributed to an increase in N2-fixation and incomplete uptake of ammonium for phytoplankton growth. A compilation of all reliable data for the proto North-Atlantic during OAE 2 demonstrates that the most pronounced negative shift in d15N from pre-OAE 2 to OAE 2 occurs in the open ocean, but with d15N never lower than -3 ppm. Using a box model of N cycling for the proto-North Atlantic during OAE 2, we show that N2-fixation is a major contributor to the d15N signal, especially in the open ocean. Incomplete uptake of ammonium for phytoplankton growth is important in regions dominated by downwelling, with lateral transport of ammonium acting as a major source. In the southern proto-North Atlantic, where bottom waters were euxinic, the light d15N signature is largely explained by upwelling of ammonium . Our study provides an overview of regional differences in d15N in the proto-North Atlantic and highlights the role of lateral exchange of water and nutrients, in addition to local biogeochemical processes, in determining d15N values of OAE 2 sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide information on the degree of alteration of the very young basaltic basement drilled on Leg 65 in the mouth of the Gulf of California, we have measured the oxygen isotopic composition of whole rocks and mineral separates. Considerable data already exist for older ocean crust, in particular for the deep holes drilled in the Atlantic Ocean on Deep Sea Drilling Project (DSDP) Legs 37, 45, 46, and 51-53. These data indicate that in all of these holes, which include crust as young as 3.5 m.y. old, a significant amount of alteration has taken place as the result of low-temperature interaction between basalt and seawater (cf. Muehlenbachs, 1977, 1980; Hoernes et al., 1978; Friedrichsen and Hoernes, 1980). It is therefore of interest to determine whether Leg 65 crust, which is only 0.5 to 1.5 m.y. old, has experienced a similar degree of alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main stages of the sedimentary cycle of uranium in modern marine basins are under consideration in the book. Annually about 18 thousand tons of dissolved and suspended uranium enters the ocean with river runoff. Depending on a type of a marine basin uranium accumulated either in sediments of deep-sea basins, or in sediments of continental shelves and slopes. In the surface layer of marine sediments hydrogenic uranium is predominantly bound with organic matter, and in ocean sediments also with iron, manganese and phosphorus. In diagenetic processes there occurs partial redistribution of uranium in sediments, as well as its concentration in iron-manganese, phosphate and carbonate nodules and biogenic phosphate detritus. Concentration of uranium in marine sediments of various types depending on their composition, as well as on forms of its entering, degree of differentiation and of sedimentation rates, on hydrochemical regime and water circulation, and on intensity of diagenetic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (sum CO2), and the 13C/12C ratio of Sum CO2 (d13C(sum CO2)). Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (d13C(POC)). Sum CO2 in sea ice brines ranged from 1368 to 7149 µmol/kg, equivalent to 1483 to 2519 µmol/kg when normalized to 34.5 psu salinity (s sum CO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available sum CO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce s sum CO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine d13C(sum CO2) ranged from -2.6 to +8.0 per mil while d13C(POC) ranged from -30.5 to -9.2 per mil. Isotopic enrichment of the sum CO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of s sum CO2, d13C(sum CO2), and d13C(POC) within sea ice suggest that epsilon p (the net photosynthetic fractionation factor) for sea ice algae is ~8 per mil smaller than the epsilon p observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shell chemistry of planktic foraminifera and the alkenone unsaturation index in 69 surface sediment samples in the tropical eastern Indian Ocean off West and South Indonesia were studied. Results were compared to modern hydrographic data in order to assess how modern environmental conditions are preserved in sedimentary record, and to determine the best possible proxies to reconstruct seasonality, thermal gradient and upper water column characteristics in this part of the world ocean. Our results imply that alkenone-derived temperatures record annual mean temperatures in the study area. However, this finding might be an artifact due to the temperature limitation of this proxy above 28°C. Combined study of shell stable oxygen isotope and Mg/Ca ratio of planktic foraminifera suggests that Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), and G. sacculifer calcify within the mixed-layer between 20 m and 50 m, whereas Globigerina bulloides records mixed-layer conditions at ~50 m depth during boreal summer. Mean calcifications of Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, and Globorotalia tumida occur at the top of the thermocline during boreal summer, at ~75 m, 75-100 m, and 100 m, respectively. Shell Mg/Ca ratios of all species show a significant correlation with temperature at their apparent calcification depths and validate the application of previously published temperature calibrations, except for G. tumida that requires a regional Mg/Ca-temperature calibration (Mg/Ca = 0.41 exp (0.068*T)). We show that the difference in Mg/Ca-temperatures of the mixed-layer species and the thermocline species, particularly between G. ruber s.s. (or s.l.) and P. obliquiloculata, can be applied to track changes in the upper water column stratification. Our results provide critical tools for reconstructing past changes in the hydrography of the study area and their relation to monsoon, El Niño-Southern Oscillation, and the Indian Ocean Dipole Mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A record of changes in Pb and Sr isotopic composition of two cores (DSDP 86-576A and LL44- GPC-3) from the red clay region of the central North Pacific has been determined for the past 60-65 million years. The isotope records of the eolian silicate fraction of the red clays reflect the change in source area as the core sites migrated under different wind systems. The Sr isotope compositions of eolian silicate material are consistent with Asian loess and North American arc volcanism that has been recognized from mineralogical studies. The silicate-bound eolian Pb isotopic compositions similarly reflect Asian loess and arc volcanism. The isotope records of three ferromanganese crusts from similar locations in the central Pacific are similar to the eolian component of red clays, but offset to less radiogenic values. This may be due to two mechanisms: (1) Pb that can be removed from eolian material by seawater is much less radiogenic, or less likely (2) hydrothermal Pb can be transported further away from venting sites through particle exchange with seawater, despite hydrothermal venting acting as a net sink of oceanic Pb. The temporal changes in Pb isotopes in the ferromanganese crusts, bulk red clays and eolian silicates are similar although offset from each other suggesting that eolian deposition is an important source of Pb to seawater and to ferromanganese crusts. This contrasts with the Atlantic and Southern Ocean where more intense deep water flow leads to isotopic gradients in FeMn crusts that do not reflect surface water conditions immediately above the crust. A mechanism is proposed which accounts for Pacific deepwater Pb being isotopically influenced by eolian deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ~54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 {plus minus} 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 {plus minus} 0.05 Ma for the early Eocene ash -17, and 65.250 {plus minus} 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radiometric geochronology is much more challenging than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 d18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, dD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5 per mil for d18O and 0 to 2 per mil for dD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high d18O (0.5-1.1 per mil) and dD (3-6 per mil) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (d18O: -0.1 to 0.5 per mil; dD: -1 to 4 per mil) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed d18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0.46 described previously by Pierre et al. (1994, J. Mar. Syst. 5 (2), 159-170.) for the tropical to subtropical Northeast Atlantic. This slope decreases to 0.46 for the subtropical North Atlantic Central Water (NACW) and the MOW and to 0.32 for the surface waters of the upper 50 m. The dD-salinity mixing lines have estimated slopes of 3.01 for the complete data, 1.26 for the MOW, 3.47 for the NACW, and 2.63 for the surface waters. The slopes of the d18O-dD relationship are significantly lower than the one for the Global Meteoric Water Line with 5.6 for the complete data set, 2.30 for the MOW, 4.79 for the NACW, and 3.99 for the surface waters. The lower slopes in all the relationships clearly reflect the impact of the evaporation surplus in the subtropics.